∫0π8cos34θdθ is equal to from Mathematic

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

451.

0πxdx1 + sinx is equal to :

  • - π

  • π2

  • π

  • None of these


452.

dxxx5 + 1 is equal to :

  • 15logx5x5 + 1 + c

  • 15logx5 + 1x5 + c

  • 15logx5x5 + 1 + c

  • None of these


453.

x + sinx1 +cosxdx is equal to

  • xtanx2 + c

  • xsec2x2 + c

  • logcosx2 + c

  • None of these


Advertisement

454.

0π8cos34θ is equal to

  • 53

  • 54

  • 13

  • 16


D.

16

We have,I = 0π8cos34θ  = 0π8cos24θcos4θ  = 0π81 +cos8θ2  = 120π8cos4θ + 120π8cos8θcos4θ  = 12sin4θ40π8 + I1           ...iNow, I1 = 120π8cos8θcos4θ            = 12cos8θsin4θ40π8                 - 120π8- 8cos8θsin4θ4            = - 18 + 0π8sin8θsin4θ            = - 18 + sin8θ- cos4θ40π8                - 120π88cos8θ- cos4θ4            = - 18 + 0 + 20π8cos8θcos4θ        I1 = - 18 +4I1Now, I1 = 1/24                    ...iiFrom Eqs. (i) and (ii), we getI = 18 +124 = 3 + 124  = 424 = 16


Advertisement
Advertisement
455.

0π2cosx - sinx1 + cosx sinxdx is equal to

  • 0

  • π2

  • π4

  • π6


456.

dxxx7 + 1 is equal to

  • logx7x7 + 1 + c

  • 17logx7x7 + 1 + c

  • logx7 + 1x7 + c

  • 17logx7 + 1x7 + c


457.

- 111 - xdx is equal to

  • - 2

  • 0

  • 2

  • 4


458.

xexdx is equal to

  • 2x - ex - 4xex +c

  • 2x - 4x + 4ex +c

  • 2x + 4x + 4ex +c

  • 1 - 4x ex +c


Advertisement
459.

dxx2 +2x + 2 is equal to

  • sin-1x +1 +c

  • sinh-1x +1 +c

  • tanh-1x +1 +c

  • tan-1x +1 +c


460.

02πsinx +sinxdx is equal to

  • 4

  • 0

  • 1

  • 8


Advertisement