∫0πxdxa2cos2x + b2sin2xdx is equal to
π2ab
πab
π22ab
∫ex1 + sinx1 + cosxdx is equal to
exsec2x2 + c
extanx2 + c
exsecx2 + c
extanx + c
B.
We have, ∫ex1 + sinx1 + cosxdx= ∫ex1 + 2sinx2cosx22cos2x2∵ sin2x = 2sinxcosx, 1 + cos2x = 2cos2x= ∫ex12cos2x2 + 2sinx2cosx22cos2x2dx= ∫ex12sec2x2 + tanx2∴ exfx + f'x, dx = exfx + cHere, fx = tanx2 and f'x = sec2x2⇒ extanx2 + C∴ ∫ex1 + sinx1 + cosxdx = extanx2 + c
∫1 + sinx4dx is equal to
8sinx8 + cosx8 + C
8sinx8 - cosx8 + C
8cosx8 - sinx8 + C
18sinx8 - cosx8 + C
∫0∞xdx1 + x1 + x2 is equal to
π2
0
1
π4
If In = ∫logxndx, then In + nIn - 1 is equal to
xlogxn
nlogxn
logxn - 1
The value of ∫dx2x - x2 is
sin-11 - x + c
sin-1x - 1 + c
sin-11 + x + c
- 2x - x2 + c
The value of ∫xlogx3dx is
1164x4logx - x4 + c
18x4logx - 4x4 + c
x4logx4 + c
1164x4logx + x4 + c
The value of ∫0πdx5 + 3cosx is
π8
zero
The value of ∫0π2logtanxdx is
- 1
12
The value of ∫- 1212cosxlog1 - x1 + xdx is
2e1/2
e1/2