∫0πxdxa2cos2x + b2sin2xdx is equal to
π2ab
πab
π22ab
∫ex1 + sinx1 + cosxdx is equal to
exsec2x2 + c
extanx2 + c
exsecx2 + c
extanx + c
∫1 + sinx4dx is equal to
8sinx8 + cosx8 + C
8sinx8 - cosx8 + C
8cosx8 - sinx8 + C
18sinx8 - cosx8 + C
B.
We have, ∫1 + sinx4dx= ∫1 + 2sinx8cosx8dx ∵ sin2x = 2sinxcosx= ∫sin2x8 + cos2x8 + 2sinx8cosx8dx= sinx8 - cosx82dx ∵ a + b2 = a2 + b2 + 2ab= ∫sinx8 + cosx8dx = - cosx818 + sinx818= 8- cosx8 + sinx8 + C= 8- cosx8 + sinx8= 8sinx8 - cosx8 + C
∫0∞xdx1 + x1 + x2 is equal to
π2
0
1
π4
If In = ∫logxndx, then In + nIn - 1 is equal to
xlogxn
nlogxn
logxn - 1
The value of ∫dx2x - x2 is
sin-11 - x + c
sin-1x - 1 + c
sin-11 + x + c
- 2x - x2 + c
The value of ∫xlogx3dx is
1164x4logx - x4 + c
18x4logx - 4x4 + c
x4logx4 + c
1164x4logx + x4 + c
The value of ∫0πdx5 + 3cosx is
π8
zero
The value of ∫0π2logtanxdx is
- 1
12
The value of ∫- 1212cosxlog1 - x1 + xdx is
2e1/2
e1/2