If f(x) is defined [- 2, 2] by f(x) = 4 - 3x + 1 and g(x) = f- x - fxx2 + 3, then ∫- 22gxdx is equal to :
64
- 48
0
24
The value of the integral ∫0π2sin100x - cos100xdx is
1100
100!100100
π100
If k∫01x . f3xdx = ∫03t . ftdt, then the value of k is
9
3
19
13
A.
Given, k∫01x . f3xdx = ∫03t . ftdt ...iLet I = k ∫01xf3xdxLet 3x = t⇒ dx = dt3when x = 0, t = 0when x = 1, t = 3∴ I = k∫03t3ft . dt3 = k9∫03t ftdtNow, form Eq. (i), we getk9∫03t ftdt = ∫03t . ftdt⇒ k9 = 1 ⇒k = 9
The value of ∫11 + cos8xdx is
tan2x8 + c
tan8x8 + c
tan4x4 + c
tan4x8 + c
The value of ∫exx5 + 5x4 + 1dx is
ex . x5 + c
ex . x5 + ex + c
ex + 1 . x5 + c
5x4 . ex + c
The value of ∫x2 + 1x2 - 1dx is
logx - 1x + 1 + c
logx + 1x - 1 + c
x + logx - 1x + 1 + c
∫ex . x5dx is
ex[x5 + 5x4 + 20x3 + 60x2 + 120x + 120] + C
ex[x5 - 5x4 - 20x3 - 60x2 - 120x - 120] + C
ex[x5 - 5x4 + 20x3 - 60x2 + 120x - 120] + C
ex[x5 + 5x4 + 20x3 - 60x2 - 120x + 120] + C
The value of ∫- 22ax3 + bx + cdx depends on the
value of b
value of c
value of a
values of a and b
∫secxsecx + tanxdx is equal to
tanx - secx + C
log1 + secx + C
secx + tanx + C
logsinx - logcosx + C
If ∫fxdx = gx, then ∫fxgxdx is equal to
12f2x
12g2x
12g'x2
f'(x)g(x)