If ∫fxsinx . cosxdx = 12b2 -&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

491.

sinxcosx1 - sin4xdx is equal to

  • 12sin-1sin2x + C

  • 12cos-1sin2x + C

  • tan-1sin2x + C

  • tan-12sin2x + C


492.

etan-1x1 + x1 +x2dx is equal to

  • xetan-1x +c

  • etan-1x +c

  • 12etan-1x +c

  • 12xetan-1x +c


493.

cscx - acscxdx is equal to

  • - 1sinalogsinxcscx - a +c

  • - 1sinalogsinx - asinx +c

  • 1sinalogsinxcscx - a +c

  • 1sinalogsinx - asinx +c


494.

If f(x) = - 1xtdt, then for any x  0, f(x) is equal to

  • 1 - x2

  • 121 +x2

  • 1 + x2

  • 121 - x2


Advertisement
495.

134 - xx + 4 - xdx is equal to

  • 1

  • 3

  • 2

  • 0


496.

If 01fxdx = 5, then the value of ... + 01x9fx10dx is equal to

  • 125

  • 625

  • 275

  • 55


Advertisement

497.

If fxsinx . cosxdx = 12b2 - a2logfx +c, where c is the constant of integration, then f(x) is

  • 2abcos2x

  • 2b2 - a2cos2x

  • 2absin2x

  • 2b2 - a2sin2x


B.

2b2 - a2cos2x

fxsinx . cosxdx = 12b2 - a2logfx +cLHS = 12fx2sinx . cosxdx        = 12fx . sin2xdxHere, put fx = 2b2 - a2 × 1cos2x        = 122b2 - a2 . sin2xcos2xdx        = 1b2 - a2tan2xdx        = 1b2 - a2 . logsec2x2 + c1Here, put c1 = c + 12b2 - a2log2b2 - a2        = 1b2 - a2 . logsec2x2 + 12b2 - a2log2b2 - a2 +c        = 12b2 - a2log2b2 - a2cos2x +cHence, fx = 2b2 - a2cos2x


Advertisement
498.

If xxx + 1dx = ktan-1m, then (k, m) is

  • (2, x)

  • (1, x)

  • 1, x

  • 2, x


Advertisement
499.

0π4sinx + cosx3 + sin2xdx is

  • 14log3

  • log3

  • 12log3

  • 2log3


500.

01x1 - x32dx is

  • - 235

  • 435

  • 2435

  • - 835


Advertisement