∫sinxcosx1 - sin4xdx is equal to
12sin-1sin2x + C
12cos-1sin2x + C
tan-1sin2x + C
tan-12sin2x + C
∫etan-1x1 + x1 + x2dx is equal to
xetan-1x + c
etan-1x + c
12etan-1x + c
12xetan-1x + c
∫cscx - acscxdx is equal to
- 1sinalogsinxcscx - a + c
- 1sinalogsinx - asinx + c
1sinalogsinxcscx - a + c
1sinalogsinx - asinx + c
If f(x) = ∫- 1xtdt, then for any x ≥ 0, f(x) is equal to
1 - x2
121 + x2
1 + x2
121 - x2
∫134 - xx + 4 - xdx is equal to
1
3
2
0
If ∫01fxdx = 5, then the value of ... + ∫01x9fx10dx is equal to
125
625
275
55
If ∫fxsinx . cosxdx = 12b2 - a2logfx + c, where c is the constant of integration, then f(x) is
2abcos2x
2b2 - a2cos2x
2absin2x
2b2 - a2sin2x
B.
∫fxsinx . cosxdx = 12b2 - a2logfx + cLHS = 12∫fx2sinx . cosxdx = 12∫fx . sin2xdxHere, put fx = 2b2 - a2 × 1cos2x = 12∫2b2 - a2 . sin2xcos2xdx = 1b2 - a2∫tan2xdx = 1b2 - a2 . logsec2x2 + c1Here, put c1 = c + 12b2 - a2log2b2 - a2 = 1b2 - a2 . logsec2x2 + 12b2 - a2log2b2 - a2 + c = 12b2 - a2log2b2 - a2cos2x + cHence, fx = 2b2 - a2cos2x
If ∫xxx + 1dx = ktan-1m, then (k, m) is
(2, x)
(1, x)
1, x
2, x
∫0π4sinx + cosx3 + sin2xdx is
14log3
log3
12log3
2log3
∫01x1 - x32dx is
- 235
435
2435
- 835