The value of ∫04x - 1dx is
52
5
4
1
If In = ∫0π4tannxdx, where where n is apositive integer, then I10 + I8 is
19
18
17
9
A.
Given integral is,In = ∫0π4tannxdxIn = ∫0π4tann - 2x . tan2xdx = ∫0π4tann - 2x . sec2xdx - ∫0π4tann - 2xdxPut tanx = t ⇒ sec2xdx = dt = ∫01tn - 2dt - ∫0π4tann - 2xdx = tn - 1n - 101 - In - 2In + In - 2 = 1n - 1Put n = 10, we et I10 + I8 = 19
If In = ∫exsinx + cosx1 - sin2xdx is
ex . cscx + C
ex . cotx + C
ex . secx + C
ex . tanx + C
When x > 0, then ∫cos-11 - x21 + x2dx is
2xtan-1x - log1 + x2 + C
2xtan-1x + log1 + x2 + C
If the area between y = mx2 and x = my2 (m > 0) is 1/4 sq units, then the value of m is
± 32
± 23
2
3
∫π6π3sin3xsin3x + cos3xdx is equal to
π2
π3
π12
π6
If [x] is the greatest integer function not greater than x, then ∫011xdx is equal to
45
66
35
55
If n ∈ N and In = ∫logxndx, then In + nIn - 1 is equal to
logxn + 1n + 1
xlogxn + C
logxn - 1
logxnn
∫cosn - 1xsinn + 1xdx where, n ≠ 0 is equal to
cotnxn + C
- cotn - 1xn - 1 + C
- cotnxn + C
cotn - 1xn - 1 + C
∫x - 1exx + 13dx is equal to
exx + 1 + C
exx + 12 + C
exx + 13 + C
xexx + 1 + C