The value of ∫04x - 1dx is
52
5
4
1
If In = ∫0π4tannxdx, where where n is apositive integer, then I10 + I8 is
19
18
17
9
If In = ∫exsinx + cosx1 - sin2xdx is
ex . cscx + C
ex . cotx + C
ex . secx + C
ex . tanx + C
When x > 0, then ∫cos-11 - x21 + x2dx is
2xtan-1x - log1 + x2 + C
2xtan-1x + log1 + x2 + C
If the area between y = mx2 and x = my2 (m > 0) is 1/4 sq units, then the value of m is
± 32
± 23
2
3
∫π6π3sin3xsin3x + cos3xdx is equal to
π2
π3
π12
π6
If [x] is the greatest integer function not greater than x, then ∫011xdx is equal to
45
66
35
55
D.
∫011xdx = ∫01xdx + ∫12xdx + ∫23xdx + ∫34xdx + ∫45xdx+ ∫56xdx + ∫67xdx + ∫78xdx + ∫89xdx + ∫910xdx + ∫1011xdx= ∫0dx + ∫121dx + ∫232dx+ ∫343dx + ∫454dx + ∫565dx + ∫676dx + ∫787dx+ ∫898dx + ∫9109dx + ∫101110dx= 2 - 1 + 23 - 2 + 34 - 3 + 45 - 4 + 56 - 5 + 67 - 6 + 78 - 7 + 89 - 8 + 910 - 9 + 1011 - 10= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10= 55
If n ∈ N and In = ∫logxndx, then In + nIn - 1 is equal to
logxn + 1n + 1
xlogxn + C
logxn - 1
logxnn
∫cosn - 1xsinn + 1xdx where, n ≠ 0 is equal to
cotnxn + C
- cotn - 1xn - 1 + C
- cotnxn + C
cotn - 1xn - 1 + C
∫x - 1exx + 13dx is equal to
exx + 1 + C
exx + 12 + C
exx + 13 + C
xexx + 1 + C