If I1 = ∫0π2xsinxdx, I2 = ∫0π2xcosxdx, then whi ch one f the followin is true ?
I1 = I2
I1 + I2 = 0
I1 = π2 . I2
I1 + I2 = π2
The value of ∫- 12xxdx, is
0
1
2
3
∫0πcos4xcos4x + sin4xdx is equal to
π4
π2
π8
π
B.
Let I = ∫0πcos4xcos4x + sin4xdx I = 2∫0π2cos4xcos4x + sin4xdx ...i ∵ ∫02afxdx = 2∫0afxdx, if f2a - x = fx = ∫0π2cos4π2 - xcos4π2 - x + sin4π2 - xdx = 2∫0π2sin4xcos4x + sin4xdx ...ii
On adding Eqs (i) and (ii), we get2I = 2∫0π2sin4x + cos4xcos4x + sin4xdx = 2∫0π2dx = 2x0π2 = 2π2 - 0 = π⇒ I = π2
If f(x) = fπ + e - x and ∫eπfxdx = 2e + π, then ∫eπxf(x)dx is equal to
π - e
π + e2
π - e2
If linear function f(x) and g(x) satisfy ∫3x - 1cosx + 1 - 2xsinxdx = fxcosx + g(x)sinx + C, then
f(x) = 3(x - 1)
f(x) = 3x - 5
g(x) = 3(x - 1)
g(x) = 3 + x
The value of the integral ∫- π4π4logsecθ - tanθdθ is
∫sin2xsin2x + 2cos2xdx is equal to
- log1 + sin2x + C
log1 + cos2x + C
- log1 + cos2x + C
log1 + tan2x + C
∫1x2x4 + 134dx is equal to
- 1 + x4142x + C
- 1 + x414x + C
- 1 + x434x + C
- 1 + x414x2 + C
∫0π4logsinx + cosxcosxdx is equal to
∫0π4logsinx + cosxcosxdx
π4log2
log2
π2log2
∫sin2x1 + cosxdx is equal to
sinx + C
x + sinx + C
cosx + C
x - sinx + C