The value of the integral ∫- π4π4logsec&theta

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

511.

If I10π2xsinxdx, I20π2xcosxdx, then whi ch one f the followin is true ?

  • I1 = I2

  • I1 + I2 = 0

  • I1 = π2 . I2

  • I1 + I2 = π2


512.

The value of - 12xxdx, is

  • 0

  • 1

  • 2

  • 3


513.

0πcos4xcos4x + sin4xdx is equal to

  • π4

  • π2

  • π8

  • π


514.

If f(x) = fπ + e - x and eπfxdx = 2e +π, then eπxf(x)dx is equal to

  • π - e

  • π + e2

  • 1

  • π - e2


Advertisement
515.

If linear function f(x) and g(x) satisfy 3x - 1cosx + 1 - 2xsinxdx = fxcosx + g(x)sinx + C, then

  • f(x) = 3(x - 1)

  • f(x) = 3x - 5

  • g(x) = 3(x - 1)

  • g(x) = 3 + x


Advertisement

516.

The value of the integral - π4π4logsecθ - tanθ is

  • 0

  • π4

  • π

  • π2


A.

0

Let I = - π4π4logsecθ - tanθAgain, let fθ = logsecθ - tanθ  f- θ = logsec- θ - tan- θ                = logsecθ + tanθ × secθ - tanθsecθ - tanθ                = logsec2θ - tan2θsecθ - tanθ = log1secθ - tanθ                = log1 - logsecθ - tanθ                = 0 - logsecθ - tanθ f- θ = - fθHence, f(θ) is an odd function          I = 0


Advertisement
517.

sin2xsin2x + 2cos2xdx is equal to

  • - log1 + sin2x + C

  • log1 + cos2x + C

  • - log1 + cos2x + C

  • log1 + tan2x + C


518.

1x2x4 + 134dx is equal to

  • - 1 + x4142x + C

  • - 1 + x414x + C

  • - 1 + x434x + C

  • - 1 + x414x2 + C


Advertisement
519.

0π4logsinx + cosxcosxdx is equal to

  • 0π4logsinx + cosxcosxdx

  • π4log2

  • log2

  • π2log2


520.

sin2x1 + cosxdx is equal to

  • sinx + C

  • x + sinx + C

  • cosx + C

  • x - sinx + C


Advertisement