∫ex1 + sinx1 + cosxdx is equal to
ex + C
extanx2 + C
exsinx + C
tanx2 + C
∫- π4π4dx1 + cos2x is equal to
4
2
0
1
The value of ∫ex1 + xcos2ex . xdx is equal to
- cotexx + C
tanex . x + C
tanex + C
cotex + C
The vate of ∫exx2tan-1x + tan-1x + 1x2 + 1dx is equal to
extan-1x + C
tan-1ex + C
tan-1xe + C
etan-1x + C
The value of ∫- π4π4sin103x . cos101xdx is
π4103
π4101
The value of ∫e6logx - e5logxe4logx - e3logxdx is equal to
0 + C
x33 + C
3x3 + C
1x + C
B.
Let I = ∫e6logx - e5logxe4logx - e3logxdx = ∫x6 - x5x4 - x3dx = ∫x5x - 1x3x - 1dx = ∫x2dx = x33 + C
∫0π2sin1000xsin1000x + cos1000xdx is equal to
1000
π2
π4
The vaue of ∫2810 - xx + 10 - xdx is
10
8
3
∫- π2π2dxesinx + 1
- π2
∫- 55x + 2dx is equal to
28
30
29
27