∫0π2tan7xcot7x + tan7xdx is equal to from

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

531.

0π21a2 . sin2x +b2 . cos2xdx

  • π2ab

  • πb4a

  • πa2b

  • πa4b


532.

x2 + 2x + 5dx is equal to

  • 12x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C

  • x + 1x2 + 2x + 5 + 12logx + 1 + x2 + 2x + 5 + C

  • x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C

  • x + 1x2 + 2x + 5 - 2logx + 1 + x2 + 2x + 5 + C


533.

x + 3exx + 42dx is equal to

  • exx + 42 + C

  • exx + 3 + C

  • 1x + 42 + C

  • exx + 4 + C


534.

cos2x - cos2θcosx - cosθdx is equal to

  • 2sinx + xcosθ

  • 2sinx - xcosθ

  • 2sinx + 2xcosθ

  • 2sinx - 2xcosθ


Advertisement
535.

0.23.5xdx is equal to

  • 3.5

  • 4

  • 4.5

  • 3


Advertisement

536.

0π2tan7xcot7x + tan7xdx is equal to

  • π4

  • π2

  • π6

  • π3


A.

π4

Let I = 0π2tan7xcot7x + tan7xdx           ...i I = 0π2tan7π2 - xcot7π2 - x + tan7π2 - xdx I = 0π2cot7xcot7x + tan7xdx         ...iiOn adding Eqs. (i) and (ii), we get    2I = 0π2tan7x + cot7xcot7x + tan7xdx        = 0π21dx = x0π2 = π2  I = π4


Advertisement
537.

xsec2xdx is equal to

  • xtanx + logsecx + c

  • x22secx + logcosx + c

  • xtanx + logcosx + c

  • tanx + logcosx + c


538.

te3t2dt is equal to

  • 16e3t2 + c

  • - 16e3t2 + c

  • 16e- 3t2 + c

  • - 16e- 3t2 + c


Advertisement
539.

0πlogsin2xdx is equal to

  • 2πloge12

  • πloge2

  • π2loge12

  • None of these


540.

dxxxn + 1 is equal to

  • 1nlogxnxn + 1 + c

  • 1nlogxn + 1xn + c

  • logxnxn + 1 + c

  • None of these


Advertisement