∫0π21a2 . sin2x + b2 . cos2xdx
π2ab
πb4a
πa2b
πa4b
∫x2 + 2x + 5dx is equal to
12x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 + 12logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 - 2logx + 1 + x2 + 2x + 5 + C
∫x + 3exx + 42dx is equal to
exx + 42 + C
exx + 3 + C
1x + 42 + C
exx + 4 + C
∫cos2x - cos2θcosx - cosθdx is equal to
2sinx + xcosθ
2sinx - xcosθ
2sinx + 2xcosθ
2sinx - 2xcosθ
∫0.23.5xdx is equal to
3.5
4
4.5
3
∫0π2tan7xcot7x + tan7xdx is equal to
π4
π2
π6
π3
∫xsec2xdx is equal to
xtanx + logsecx + c
x22secx + logcosx + c
xtanx + logcosx + c
tanx + logcosx + c
∫te3t2dt is equal to
16e3t2 + c
- 16e3t2 + c
16e- 3t2 + c
- 16e- 3t2 + c
∫0πlogsin2xdx is equal to
2πloge12
πloge2
π2loge12
None of these
A.
Let I = ∫0πlogsin2xdx = 2∫0πlogsinxdx = 4∫0π2logsinxdx ...i⇒ I = 4∫0π2logsinπ2 - xdx = 4∫0π2logcosxdx ...iiOn adding Eqs. (i) and (ii), we get 2I = 4∫0π2logsinxcosxdx⇒ I = 2∫0π2logsin2x - log2dx = 2∫0π2logsin2xdx - 2xlog20π2 = 22∫0πlogsint - 2 . π2loge2∵ Putting 2x = t
= 2∫0π2logsinxdx - πloge2⇒ I = 2 . I4 - πloge2 ∵ using Eq. (i)⇒ I - I2 = - πloge2⇒ I = - 2πloge2 = 2πloge12
∫dxxxn + 1 is equal to
1nlogxnxn + 1 + c
1nlogxn + 1xn + c
logxnxn + 1 + c