∫0πcos3xdx is equal to from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

561.

1 - x1 + xdx is equal to

  • cos-1x + 1 - xx - 2 + c

  • cos-1x - 1 - xx - 2 + c

  • cos-1x + 1 - xx + 2 + c

  • None of the above


562.

logx + 1 + x21 + x2dx is equal to

  • 12logx + 1 + x22 + c

  • logx + 1 + x22 + c

  • logx + 1 + x2 + c

  • None of the above


563.

sin8x - cos8x1 - 2sin2xcos2xdx is equal to

  • sin2x + c

  • - 12sin2x + c

  • 12sin2x + c

  • - sin2x + c


564.

dxsinx + sin2x is equal to

  • 16log1 - cosx + 12loglog1 + cosx - 23log1 + 2cosx + c

  • 6log1 - cosx + 2loglog1 + cosx - 23log1 + 2cosx + c

  • 6log1 - cosx + 12loglog1 + cosx + 23log1 + 2cosx + c

  • None of the above


Advertisement
565.

fxg''x - f''xgxdx is equal to

  • fxg'x

  • f'(x)g(x) - f(x)g'(x)

  • f(x)g'(x) - f'(x)g(x)

  • f(x)g'(x) + f'(x)g(x)


566.

Correct value of 0πsin4xdx is

  • 8π3

  • 2π3

  • 4π3

  • 3π8


567.

0π2logsinxdx is equal to

  • - π2log2

  • πlog12

  • - π2log12

  • log2


Advertisement

568.

0πcos3xdx is equal to

  • - 1

  • 0

  • 1π

  • 1


B.

0

Let I = 0πcos3xdxLet   fx = cos3x, thenfπ - x = - cos3x,               = - fx 0πcos3xdx = 0


Advertisement
Advertisement
569.

Suppose f is such that f(- x) = - f(x), for every x and 01fxdx = 5, then - 10ftdt is equal to

  • 10

  • 5

  • 0

  • - 5


570.

Withthehelp of Trapezoidal rule fornumerical integration and the following table
x 0 0.25 0.50 0.75 1
f(x) 0 0.625 0.2500 0.5625 1

the value of 01fxdx is

  • 0.35342

  • 0.34375

  • 0.34457

  • 0.33334


Advertisement