By Simpson's 13rd rule, the approximate value of the integral&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

601.

The value of 0lnπ2cosex2xex2dx is

  • 1

  • 1 + sin(1)

  • 1 - sin(1)

  • (sin(1) - 1


602.

If f(x) = 2xdt1 + t4 and g is the inverse of f. Then, the value of g'(0) is

  • 1

  • 17

  • 17

  • None of the above


603.

0100ex - xdx is equal to

  • 50(e - 1)

  • 75(e - 1)

  • 90(e - 1)

  • 100(e - 1)


Advertisement

604.

By Simpson's 13rd rule, the approximate value of the integral 12e- x2dx using four intervals, is

  • 0.377

  • 0.487

  • 0.477

  • 0.387


C.

0.477

Given integral is 12e- x2dxOn dividing interval [1, 2] in four parts, we haveh = 2 - 14 = 14Now, value of f(x) = e- x2 is given below
x 1 54 32 74 e
f(x) 0.6065 0.5352 0.4724 0.4168 0.3679

Now, Simpson's 13 rule is

x0x0 + nhfxdx = h3y0 + yn + 4y1 + y3 + ... + yn - 1+ 2y2 + y4 + ... + yn - 2 12e- x2dx = 1120.6065 + 0.3679 + 40.5352 + 0.4168+ 2(0.4724)                         = 1120.9744 + 3.808 + 0.9448                         = 112 × 5.7272 = 0.477


Advertisement
Advertisement
605.

For n = 4, using trapezoidal rule, the value of 02dx1 + x will be

  • 1.116625

  • 1.1176

  • 1.1180

  • None of these


606.

The value of 05dx1 + x2 by chosing six sub-intervals and by using Simpson's rule will be

  • 1.3562

  • 1.3662

  • 1.3456

  • 1.2662


607.

If cos4x + 1cotx - tanxdx = Acos4x + B, then the value of A is

  • 12

  • 18

  • - 18

  • 14


608.

If f(x) = fx = x, gx = ex - 1 and fogxdx = Afogx + Btan-1fogx + C, then the value of A + B is

  • 1

  • 2

  • 3

  • None of these


Advertisement
609.

The value of 01tan-12x - 11 + x - x2dx is

  • 0

  • 1

  • - 1

  • None of these


610.

0π2sin2xtan-1sinxdx =

  • 1

  • 0

  • π2

  • π2 - 1


Advertisement