∫- 11ax3 + bxdx = 0 for
any value of a and b
a > 0, b > 0 only
a < 0, b > 0 only
Using the Trapezoidal rule, the approximate value of ∫14ydx
0.1833
1.1833
2.1833
3.1833
∫dx1 - cosx - sinx is equal to
log1 + cotx2 + c
log1 - tanx2 + c
log1 - cotx2 + c
log1 + tanx2 + c
C.
We have,I = ∫dx1 - cosx - sinx = ∫dx1 - 1 - tan2x21 + tan2x2 - 2tanx21 + tan2x2 = ∫sec2x2dx1 + tan2x2 + tan2x2 - 2tanx2 = 12∫sec2x2dxtanx2tanx2 - 1Let tanx2 = z⇒ 12sec2x2dx = dz⇒ sec2x2dx =2dz∴ I = 12∫2dzzz - 1 = ∫1z - 1 - 1z = logz - 1 - logz + c =logz - 1z + c = logtanx2 - 1tanx2 + C = log1 - cotx2 + c
∫dx7 + 5cosx is equal to
13tan-113tanx2 + c
16tan-116tanx2 + c
17tan-1tanx2 + c
14tan -1tanx2 + c
∫3xdx9x - 1 is equal to
1log3log3x + 9x - 1 + c
1log3log3x - 9x - 1 + c
1log9log3x + 9x - 1 + c
1log3log9x + 9x - 1 + c
∫23dxx2 - x is equal to
log23
log43
log83
log14
∫- π2π2sin4xcos6xdx is equal to
3π128
3π256
3π572
3π64
The approximate value of ∫29 x2dx by using trapezoidal rule with 4 equal intervals, is
248
242.5
242.8
243
A minimum value of ∫0xtet2dt is
0
1
2
3
∫1 + x + x + x2x + 1 + xdx is equal to
121 + x + C
231 + x32 + C
1 + x + C
21 + x32 +C