∫ 1 + x - x- 1ex + x- 1dx is equal to˸
1 + xex + x- 1 + C
x - 1ex + x- 1 + C
- xex + x- 1 + C
xex + x- 1 + C
∫- 22xdx is equal to
1
2
3
4
∫01sin2tan-11 + x1 - xdx is equal to
π6
π4
π2
π
B.
LetI = ∫01sin2tan-11 + x1 - xdx Put x = cosθ ⇒ dx = - sinθdθ∴ I = ∫π20sin2tan-11 + cosθ 1 - cosθ - sinθdθ = ∫π20sin2tan-1π2 - θ2sinθdθ = ∫π20sinπ - θsinθdθ = ∫π20sin2θdθ = ∫π201 - cos2θ2dθ = 12θ - sin(2θ)2 0π2 = 12π2 - 0 = π4
∫033x + 1x2 + 9dx is equal to :
log22 + π12
log22 + π2
log22 + π6
log22 + π3
If [2, 6] is divided into four intervals of equal length, then the approximate value of ∫261x2 - xdx using Simpson's rule, is
0.3222
0.2333
0.5222
0.2555
If fx = 1x2∫3x2t - 3f'tdt, then f't, then f'(3) is equal to
- 1 2
- 13
12
13
∫dxx + 100x + 99 = fx + c ⇒ fx
2(x + 100)1/2
3(x + 100)1/2
2tan-1x + 99
2tan-1x + 100
∫3 - x21 - 2x + x2exdx = exfx + c ⇒ fx
1 + x1 - x
1 - x1 + x
1 - xx - 1
x - 11 + x
∫cotxsinxcosxdx = - fx + c ⇒ fx
2tanx
- 2tanx
- 2cotx
2cotx
∫- π2π2log2 - sinθ2 + sinθdθ is equal to
0
- 1