If [2, 6] is divided into four intervals of equal length, then th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

631.

 1 + x - x- 1ex + x- 1dx is equal to˸

  • 1 + xex + x- 1 + C

  • x - 1ex + x- 1 + C

  • - xex + x- 1 + C

  • xex + x- 1 + C


632.

- 22xdx is equal to

  • 1

  • 2

  • 3

  • 4


633.

01sin2tan-11 + x1 - xdx is equal to

  • π6

  • π4

  • π2

  • π


634.

033x + 1x2 + 9dx is equal to :

  • log22 + π12

  • log22 + π2

  • log22 + π6

  • log22 + π3


Advertisement
Advertisement

635.

If [2, 6] is divided into four intervals of equal length, then the approximate value of 261x2 - xdx using Simpson's rule, is

  • 0.3222

  • 0.2333

  • 0.5222

  • 0.2555


C.

0.5222

Here, h = 6 - 24 = 1Let     y = 1x2 - xAt    x0 = 2, y0 = 122 - 2 = 14 - 2 = 12       x1 = 3, y1 = 132 - 3 = 19 - 3 = 16       x2 = 4, y2 = 142 - 4 = 116 - 4 = 112       x3 = 5, y3 = 152 - 5 = 125 - 5 = 120      x4 = 6, y4 = 162 - 6 = 136 - 6 = 130By Simpson's rule261x2 - xdx = h3y0 + y4 + 4y1 + y3 + 2y2                     = 1312 + 130 + 416 + 120 + 2112                     = 131630 + 426120 + 16                     = 131630 + 2630 + 16                     = 16 + 26 + 590 = 4790 = 0.5222261x2 - xdx = 0.5222


Advertisement
636.

If fx = 1x23x2t - 3f'tdt, then f't, then f'(3) is equal to

  • - 1 2

  • - 13

  • 12

  • 13


637.

dxx + 100x + 99 = fx + c  fx

  • 2(x + 100)1/2

  • 3(x + 100)1/2

  • 2tan-1x + 99

  • 2tan-1x + 100


638.

3 - x21 - 2x + x2exdx = exfx + c  fx

  • 1 + x1 - x

  • 1 - x1 + x

  • 1 - xx - 1

  • x - 11 + x


Advertisement
639.

cotxsinxcosxdx = - fx + c  fx

  • 2tanx

  • - 2tanx

  • - 2cotx

  • 2cotx


640.

- π2π2log2 - sinθ2 + sinθ is equal to

  • 0

  • 1

  • 2

  • - 1


Advertisement