∫0π2 dx1 + tan3x = ?
π
π2
π4
3π2
C.
I = ∫ 0π2 dx1 + tan3x I = ∫ 0π2 cos3xsin3x + cos3xdx ...iI = ∫ 0π2 cos3π2 - xsin3π2 - x + cos3π2 - xdxI = ∫ 0π2 sin3 xsin3x + cos3xdx ...iiOn adding Eqs. i and ii, we get2I = ∫ 0 π2 sin3x + cos3xsin3x + cos3xdx = ∫ 0 π2 1 dx = π2⇒ I = π4
∫- 11 coshx1 + e2xdx = ?
0
1
e2 - 12e
e2 + 22e
If ∫ex - 1ex + 1dx = fx + c, then fx is equal to
2logex - 1
2loge2x - 1
2logex + 1 - x
2loge2x + 1
∫tan-11 - x1 + xdx = ?
12xcos-1x - 1 - x2 + c
12xcos-1x + 1 - x2 + c
12xsin-1x - 1 - x2 + c
12xsin-1x + 1 - x2 + c
sinx + 8cosx4sinx + 6cosxdx = ?
x + 12log4sinx + 6cosx + c
2x + log2sinx + 3cosx + c
x + log2sinx + 3cosx + c
12log4sinx + 6cosx + c
If ft = ∫- tte- x2dx, then limt→∞ft = ?
12
- 1
∫02πsin6xcos5xdx = ?
2π
- π
If ∫ex1 - sinx1 - cosxdx = fx + constant, then f(x) is equal to
excotx2 + c
e-xcotx2 + c
- excotx2 + c
- e- xcotx2 + c
If In = ∫xnecxdx for n ≥ 1, then cIn + n . In - 1 is equal to
xnecx
xn
ecx
xn + ecx
If ∫ex1 + x . sec2xexdx = f(x) + constant, then f(x) is equal to
cosxex
sinxex
2tan-1x
tanxex