For any integer n ≥ 2, let In = ∫tann(x)dx. If In = 1atann - 1x - bIn - 2 for n≥ 2, then the ordered par (a, b) equals to
n - 1, n - 1n - 2
n - 1, n - 2n - 1
(n, 1)
(n - 1, 1)
If x2 - 1x + 12xx2 + x + 1dx= Atan-1x2 + x + 1x C, in which C is a constant, then A =?
12
3
2
1
C.
Let I = ∫x2 - 1x + 12xx2 + x + 1dxNow, ddxtan-1x2 + x + 1x= 11 + x2 + x + 1x × ddxx2 + x + 1x
= xx2 + 2x + 1x × 2x + 12x2 + x + 1 - x2 + x + 1 12xx2= xx2 + 2x + 1x2x + 12x2 + x + 1 - x2 + x + 12x= xx2 + 2x + 12x + 1x - x2 + x + 1 2xx2 + x + 1x
= xx + 12x2 - 12 × xx2 + x + 1= x2 - 12x + 12x2 + x + 1∴ I = ∫ ddx2tan-1x2 + x + 1x= 2tan-1x2 + x + 1x + C∴ A = 2
By the defination of the definite integral, the value oflimn→∞1415 + n5 + 2425 + n5 + 3435 + n6 + ... + n4n5 + n5 is
log2
15log2
14log2
13log2
∫0π6cos43θ . sin26θdθ = ?
π96
5192
5π256
5π192
∫dxx - 1x2 - 1 is equal to
- x - 1x + 1 + C
x - 1x2 + 1 + C
- x + 1x - 1 + C
x2 + 1x - 1 + C
∫exx2 + 1x + 12dx is equal to
exx + 1 + C
- exx + 1 + C
exx - 1x + 1 + C
exx + 1x - 1 + C
∫x + 1x1 + xexdx is equal to
log1 + xexxex + C
logxex1 + xex + C
log1 + xex + C
∫fxg'x - f'xgxfxgxloggx - logfxdx is equal to
loggxfx + C
12loggxfx2 + C
gxfxloggxfx + C
loggxfx - gxfx + C
∫0π4sinx + cosx3 + sin2xdx = ?
12log3
log(3)
14log3
∫- 111 + x + x2 - 1 - x + x21 + x + x2 + 1 - x + x2dx = ?
3π2
π2
0
- 1