∫π4π4x + π42 - cos2xdx is e

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

If x3e5xdx = e5x54fx + C,then fx = ?

  • x35 - 3x252 + 6x53 - 654

  • 5x3 - 52x2 + 53x - 6

  • 53x3 - 15x2 + 30x - 6

  • 53x3 - 75x2 + 30x - 6


702.

xx2 + 2x + 22dx = ?

  • x2 + 2x2 +2x + 2 - 12tan-1x - 1 + C

  • x2 - 24x2 + 2x +2 - 12tan-1x +1 +C

  • x2 + 22x2 + 2x +2 - 12tan-1x +1 +C

  • 2x - 1x2 +2x +2 + 12tan-1x +1 +C


703.

If loga2 + x2dx = hx + C, then hx = ?

  • xloga2 +x2 + 2tan-1xa

  • x2loga2 +x2 +x +atan-1xa

  • xloga2 + x2 - 2x + 2atan-1xa

  • x2loga2 +x2 + 2x - a2tan-1xa


704.

For x > 0, if logx5dx = ?xAlogx5 + Blogx4+Clogx3 + Dlogx2 +Elogx + F + Constant, thenA +B +C +D+E+ F = ?

  • - 44

  • - 42

  • - 40

  • - 36


Advertisement
705.

By the definition of the definite integral, the value of limn1n2 - 1 + 1n2 - 22 + ... 1n2 - n - 12 is equal to

  • π

  • π2

  • π4

  • π6


Advertisement

706.

π4π4x + π42 - cos2xdx is equal to

  • 8π35

  • 2π39

  • 4π239

  • π263


D.

π263

Let I = - π4π4x + π42 - cos2xdx= - π4π4x2 - cos2x + π4- π4π4dx2 - cos2x= 0 + 2 × π40π4dx2 - 1 - tan2x1 + tan2x0 = π20π41 + tan2x2 + 2tan2x - 1 + tan2xdx   = π20π4sec2x1 + 3tan2xdxPut tanx = t  sec2xdx = dt π201dt1 + 3t2 = π2 × 13tan-13t01 = π23tan-13 - tan-10 = π23π3 = π263


Advertisement
707.

5x + 3x2x2 - 2dx = ?

  •  32x + 1322log2 - x2 + x + C

  •  32x + 1342logx + 2x - 2 + C

  •  32x + 1342logx - 2x + 2 + C

  •  35x + 532logx + 2x - 2 + C


708.

If y = tan-1x1 + 1 - x2 + sin2tan-11 - x1 + x, then dydx = ?

  • 1 - 2x21 - x2

  • 1 - 2xx1 - x2

  • 2x + 1x1 - x

  • 2 - x21 - x2


Advertisement
709.

If 010fxdx= 5, then k = 11001fk - 1 + xdx = ?

  • 50

  • 10

  • 5

  • 20


710.

xe - 1 + ex - 1xe + exdx

  • - 1elogxe +ex + C

  • - elogxe +ex + C

  • 1elogxe +ex + C

  • elogxe +ex + C


Advertisement