∫x+ sinx1 + cosxdx = ?
xtanx2 + C
xsinx2 + cosx2 + C
xtanx2 + secx2 + C
If In = ∫sinnxcosxdx, then In = ?
- 2n - 1cosn - 1x - In - 2
2n - 1cosn - 1x + In - 2
- 2n + 1sinn - 1x - In - 2
- 2n + 1cosn - 1x - In - 2
A.
a We have, In = ∫sinnxcosxdx= sinnx - x + xcosxdx= ∫sinn - 1xcosx + cosn - 1xsinxcosxdx= - cosn - 1xn - 1 + 12sinnx + sin2 - nxcosxdx= - cosn - 1xn - 1 + 12∫sinnxcosxdx - 12∫sinn - 2xcosxdx= - cosn - 1xn - 1 + 12In - 12In - 2⇒ 1 - 12In = - cosn - 1xn - 1 - 12In - 2⇒ In = - 2n - 1cosn - 1x - In - 2
The integral ∫02x - 1 - xdx = ?
Let [t] denote the greatest integer less than or equal to t. Then the value of ∫122x - 3xdx is
Area enclosed by 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 12 ≤ x ≤ 2 is :
112
16
1
13
Evaluate ∫ - πππ - xdx
π2
π22
π23
π24
215 + 518 has integral terms find least value of n is
256
257
258
259
If ∫sin-1x1 + xdx = Axtan-1x + Bx + C, where C is a constant of integration, then ordered pair Ax, Bx can be :
x - 1, x
x - 1, - x
x + 1, x
x + 1, - x
If the value of the integral ∫012x21 - x232dx x = sinθ; dx = cosθdθ
23 + π
23 - π
32 + π
32 - π
The total number of 3-digit numbers, whose sum of digits is 10, is.......