The value of  ∫ - π2π211 +esin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

731.

If e2x + 2ex - e - x - 1eex +e - xdx = gxeex + e - x +C,  where c is a constant of integration, then g(0) is 

  • 1

  • e

  • e2

  • 2


Advertisement

732.

The value of   - π2π211 +esinxdx is :

  • π4

  • π2

  • 3π2

  • π


B.

π2

I =  - π2π211 +esinxdx I =   - π2π2esinx1 +esinxdx   Replace x  a + b + xabfxdx = abfa + b + xdx2I =  - π2π21dx I = 12  - π2π2dxI = 12x- π2π2 I = π2


Advertisement
733.

If cosθ5 + 7sinθ - 2cos2θ = AlogeBθ + C, where C is a constant of integration, then BθAcan be:

  • 2sinθ + 15sinθ + 3

  • 52sinθ + 1sinθ + 3

  • 2sinθ + 1sinθ + 3

  • 5sinθ + 32sinθ + 1 


734.

The general solution of the differential equation

1 + x2 + y2 +x2y2 + xydydx = 0 where C is constant of integration 

  • 1 + y2 + 1 + x2 = 12loge1 + x2 - 11 + x2 +1 +C

  • 1 + y2 + 1 + x2 = 12loge1 + x2 +11 +x2 - 1 +C

  • 1 + y2 - 1 + x2 = 12loge1 + x2 -11 +x2 + 1  +C

  • 1 + y2 - 1 + x2 = 12loge1 + x2 +11 +x2 - 1  +C


Advertisement
735.

If I1 = 011 - x50100dx and I2 = 011 - x50101dx I2  = αI1 Then α = ?

  • 50495050

  • 50515050

  • 50505051

  • 50505049


736.

The integral 12ex . x22 + logexdx = ?

  • e(2e - 1)

  • e(4e + 1)

  • 4e2 - 1

  • e(4e - 1)


737.

The common difference of the A.P. b1,b2,....,bm is 2 more than common difference of A.P. a1,a2,...,an. If a40 = –159, a100 = – 399 and b100 = a70, then b1is equal to : 

  • 127

  • 81

  • - 127

  • - 81


Advertisement