The orthocentre of triangle formed by the lines x + 3y = 10 and 6

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

The centroid of the triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x - y = - 4 lies in the quadrant

  • I

  • II

  • III

  • IV


52.

All the points on the X-axis have

  • x = 0

  • y = 0

  • x = 0, y = 0

  • y = 0, z = 0


53.

For all values of a and b the line (a + 2b)x + (a - by + (a + 5b) = 0 passes through the point.

  • (- 1, 2)

  • (2, - 1)

  • (- 2, 1)

  • (1, - 2)


54.

The incentre of triangle formed by the lines x + y = 1, x =1, y = 1 is

  • 1 - 12, 1 - 12

  • 1 - 12, 12

  • 12, 12

  • 12, 1 - 12


Advertisement
Advertisement

55.

The orthocentre of triangle formed by the lines x + 3y = 10 and 6x2 + xy - y2 = 0 is

  • (1, 3)

  • (3, 1)

  • (- 1, 3)

  • (1, - 3)


A.

(1, 3)

The given lines are

                x + 3y = 10                ...(i)

and 6x2 + xy - y2 = 0

or    6x2 + 3xy - 2xy - y2 = 0

or 3x(2x + y) - y(2x + y) = 0

                            3x - y = 0       ...(ii)

                           2x + y = 0      ...(iii)

On solving Eqs. (i) and (ii), we get

       x + 33x = 10             10x = 10                 x = 1and 3 - 1 - y = 0                 y = 3 Coordinates of B are (1, 3).On solving Eqs. (ii) and (iii), we get          x = 0, y = 0 Coordinates of A are (0, 0).

A line perpendicular to BC is3x - y = λIt passes through (0, 0), then 0 - 0 = λ     λ= 0The line AD is 3x - y = 0           ...(iv)A line perpendicular to AC isx - 2y = λIt passes through (1, 3), then 1 - 6 = λ         λ = - 5The line BE is x - 2y = - 5      ...(v)On solving Eqs. (iv) and (v), we getx = 1, y = 3Thus, the coordinates of required orthocentre is (1, 3).


Advertisement
56.

The point P is equidistant from A(1, 3), B(- 3, 5)and C(5, - 1), then PA is equal to

  • 5

  • 55

  • 25

  • 510


57.

A particle moves along the curve y = x2 + 2x. Then, the point on the curve such that x and y coordinates of the particle change with same rate is

  • (1, 3)

  • 12, 52

  • - 12, - 34

  • (- 1, - 1)


58.

If PM is the perpendicular from P(2, 3) onto the line x + y = 3, then the coordinates of M are

  • (2, 1)

  • (- 1, 4)

  • (1, 2)

  • (4, - 1)


Advertisement
59.

If OA is equally inclined to OX, OY and OZ and if A is 3units from the origin, then A is :

  • (3, 3, 3)

  • (- 1, 1, - 1)

  • (- 1, 1, 1)

  • (1, 1, 1)


60.

The area (in square unit) of the triangle formed by the points with polar coordinates 1, 0, 2, π3 and 3, 2π3 is

  • 1134

  • 534

  • 54

  • 114


Advertisement