If in a ∆ABC, r1 = 2r2 = 3r3, then the perimeter

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The radius of the circle given by

x2 + y2 + z2 + 2x - 2y - 2z - 19 = 0

  • 4

  • 3

  • 2

  • 1


72.

If x-coordinate of a point P on the line joining the points Q(2, 2, 1) and R(5, 1, - 2) is 4, then the z-coordinate of P is

  • - 2

  • - 1

  • 1

  • 2


73.

The equation of the sphere through the points (1, 0, 0), (0, 1, 0) and (1, 1, 1)and having the smallest radius

  • 3x2 + y2 + z2 - 4x - 4y - 2z + 1 = 0

  • 2x2 + y2 + z2 - 3x - 3y - z + 1 = 0

  • x2 + y2 + z2 - x - y - z + 1 = 0

  • x2 + y2 + z2 - 2x - 2y + 4z + 1 = 0


74.

The origin is translated to (1, 2). The point(7, 5) in the old system undergoes the following transformations successively.

I. Moves to the new point under the given translation of origin.

II. Translated through 2 units along the negative direction of the new X-axis.

III. Rotated through an angle - about the 4 origin of new system in the clockwise direction. The final position of the point (7, 5) is

  • 92, - 12

  • 72, 12

  • 72, - 12

  • 52, - 12


Advertisement
75.

The perpendicular distance from the point 1, π to the line joining (1, 00) and 1, π2 (in polar coordinates) is

  • 2

  • 3

  • 1

  • 2


76.

If D(2, 1, 0), E(2, 0, 0) and F(0, 1, 0) are mid-points of the sides BC, CA and AB of ABC, respectively. Then, the centroid ofABC is

  • 13, 13, 13

  • 43, 23, 0

  • - 13, 13, 13

  • 23, 13, 13


77.

If in a ABC, r= 2, r2 = 3 and 7a = 6, then ae quals to

  • 4

  • 1

  • 2

  • 3


78.

If 2x3 + x2 - 5x4 - 25 = Ax + Bx2 - 5 + Cx + 1x2 +5, then A, B, C = ?

  • (1, 1, 1)

  • (1, 1, 0)

  • (1, 0, 1)

  • (1, 2, 1)


Advertisement
Advertisement

79.

If in a ABC, r1 = 2r2 = 3r3, then the perimeter of the triangle is equal to

  • 3a

  • 3b

  • 3c

  • 3(a + b + c)


B.

3b

Given that, r1 = 2r2 = 3r3Let s - a = 2s - b = 3s - c = 1KThen, s - a = K             ...i          s - b = 2K           ...iiand    s - c = 3K           ...iiiOn adding Eqs (i), (ii) and (iii), we get3s - a + b + c = 6K 3s - 2s = 6 × s - b2         a + b + c = 2s using Eq. (ii) 3s - 2s = 3s - b            s = 3s - 3b          2s = 3b


Advertisement
80.

If the equation to the locus of points equidistant from the points (- 2, 3), (6, - 5) is ax + by + c = 0, where a > 0, then the ascending order of a, b, c is

  • a, b, c

  • c, b, a

  • b, c, a

  • a, c, b


Advertisement