The value of sin2cos-153 is
53
253
459
259
sin2sin-16365 is equal to
212665
46565
86365
6365
cot-12 . 12 + cot-12 . 22 + cot-12 . 32 + ... upto ∞ is equal to
π4
π3
π2
π5
If 'x' takes negative permissible value, then sin-1(x) is equal to
- cos-11 - x2
cos-1x2 - 1
π - cos-11 - x2
cos-11 - x2
If a > b > 0, sec-1a + ba - b = 2sin-1x, then x is
- ba + b
ba + b
- aa + b
aa + b
If x ≠ nπ, x ≠ 2n + 1π2, n ∈ Z, then sin-1cosx + cos-1sinxtan-1cotx + cot-1tanx is
π6
C.
x ≠ nπ, x ≠ 2n + 1π2, n ∈ ZThen, sin-1cosx + cos-1sinxtan-1cotx + cot-1tanx= sin-1sinπ2 - x + cos-1cosπ2 - xtan-1tanπ2 - x + cot-1cotπ2 - x= π2 - x + π2 - xπ2 - x + π2 - x = π - 2xπ - 2x = 1
But from the option we take x = π4
= sin-1cosπ4 + cos-1sinπ4tan-1cotπ4 + cot-1tanπ4= sin-112 + cos-112tan-11 + cot-11 ∵ sin-1x + cos-1x = π2 tan-1x + cot-1x = π2= π2π2 = 1
Hence, option (c) π4 is correct.
In ∆ABC, if a = 2, B = tan-112 and C = tan-113, then (A, b) equals
3π4, 25
π4, 225
3π4, 225
π4, 25
The domain of f(x) = sin-1log2x2 is
0 ≤ x ≤ 1
0 ≤ x ≤ 4
1 ≤ x ≤ 4
4 ≤ x ≤ 6
If tan-1x = π4 - tan-113, then x is
13
12
14
16
If cos-1yb = nlogxn, then
xy1 = nb2 - y2
xy1 + nb2 - y2 = 0
y1 = xb2 - y2
xy1 - b2 - y2 = 0