If y = (tan-1(x)), then (x2 + 1)2y2 + 2x(x2 + 1)y1 is equal to f

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

131.

2cos-1x = sin-12x1 - x2 is valid for all values of x satisfying

  • - 1  x  1

  • 0  x  1

  • 12  x  1

  • 0  x  12


132.

If msin-1x = logey, then 1 - x2y'' - xy' is equal to

  • m2y

  • - m2y

  • 2y

  • - 2y


133.

If 3x + 1x - 1x + 3 = Ax - 1 + Bx + 3sin-1AB is equal to

  • π2

  • π3

  • π6

  • π4


134.

The number of real solutions of the equation tan-1xx + 1 + sin-1x2 + x + 1 = π2 is

  • one

  • four

  • two

  • infinitely many


Advertisement
135.

If x + 12x3 + x = Ax + Bx + Cx2 + 1, then sin-1A + tan-1B + sec-1C is equal to

  • π2

  • π6

  • 0

  • 5π6


136.

cos2cos-115 + sin-115 is equal to

  • 15

  • - 265

  • - 15

  • 32


137.

The value of tan-1xy - tan-1x - yx +y (where, x, y > 0) is

  • π4

  • - π4

  • π2

  • - π2


Advertisement

138.

If y = (tan-1(x)), then (x2 + 1)2y2 + 2x(x2 + 1)y1 is equal to

  • 4

  • 0

  • 2

  • 1


C.

2

Given, y = tan-1x2On differentlating both sides w.r.t x, we get     dydx = 2tan-1x × ddxtan-1x dydx = 2tan-1x1 + x2 1 + x2dydx = 2tan-1xAgain, dlfferenating both sides w.r. t . x, we get1 + x2ddxdydx + dydxddx1 + x2 = 2ddxtan-1x      1 + x2d2ydx2 + dydx0 + 2x = 21 + x2  1 + x2d2ydx2 + 2x1 + x2dydx = 2or     1 +x22y2 + 2x1 + x2y1 = 2


Advertisement
Advertisement
139.

Given 0  x  12, then the value of tansin-1x2 + 1 - x22 - sin-1x is

  • 1

  • 3

  • - 1

  • 13


140.

The value of sin2sin-10.8 is equal to

  • 0.48

  • sin1.2°

  • sin1.6°

  • 0.96


Advertisement