If cos-1xa + cos-1yb = αx2a2 - 2xyabcosα + y2b2, then x2a2 - 2xyabcosα + y2b2 is equal to
sin2α
acos2α
atan2α
acot2α
The domain of the function sin-1log2x22 is
- 2, 2 ~ - 1, 1
- 1, 2 ~ 0
[1,2]
- 2, 2 ~ 0
The domain of sin-1log3x3 is
[1, 9]
[- 1, 9]
[- 9, 1]
[- 9, - 1]
The trigonometric equation sin-1x = 2sin-1a, has a solution for
12 < a ≤ 12
all real values of a
a ≤ 12
a ≥ 12
tan-112 + tan-113 is equal to
0
π4
π2
π
B.
tan-112 + tan-113= tan-112 + 131 - 12 . 13= tan-15656 = tan-11= π4
Domain of y = cot-1x is
- ∞, 0
0, ∞
- ∞, ∞
None of these
sincot-1tan-1x is equal to
1
1 + x22 + x2
1 - x22 + x2
1 + x22 - x2
If sinsin-115 + cos-1x = 1, then x is
15
25
35
The value of tancos-145 + tan-123 will be
611
617
116
176
The value of sin-135 + sin-1817 is
cos-13685
sin-11585
sin-13685
cos-11585