The value of limx→0sinx4 - x4cosx4 + x20x4e2x4 - 1 - 2x4 is equal to
0
- 16
16
Does not exist
C.
limx→0sinx4 - x4cosx4 + x20x4e2x4 - 1 - 2x4Using L'Hospital Rule= limx→04x7sinx4 + 20x1920e2x4x7 - 16x7 + 4e2x4 - 4x3= limx→04x3x4sinx4 + 5x164x32e2x4x4 - 4x4 + e2x4 - 1Usin L'Hospital's rule= limx→04x3sinx4 + 4x7cosx4 + 80x1516e2x4x7 + 16e2x4x3 - 16x3Using L'Hospital Rule= limx→04x3cosx4 + 4x3cosx4 - 4x7sinx4 + 240x1132e2x4x7 + 48e2x4 . x3= limx→04x32cosx4 - x4sinx4 + 60x114x38e2x4 . x4 + 12e2x4= limx→02cosx4 - x4sinx4 + 60x11e2x48x4 + 12= 2cos04 - 04sin04 + 60011e202804 + 12= 212 = 16
The equation sinx + 2sin2x + 3sin3x = 8π has atleast one root in
π, 3π2
0, π2
π2, π
π2, 3π4
If xy = ey - x, then dydx =
yx - 1xy + 1
yx + 1xy - 1
x + 1y - 1
x - 1y + 1
If y = cos-1sinx + cosx2, - π4 < x < π4, then dydx =
- 1
1
None of these
limx→∞x + ax + ba + b is equal to
1b - a
ea - b
eb
limx→0x . 10x - x1 - cosx is equal to
log10
2log10
3log10
4log10
If yk is the kth derivative of y with respect to 'x', and y = cos(sin(x)), then y1sinx + y2cosx is equal to
ysin3x
- ysin3x
ycos3x
- ycos3x
limx→0sinxsin-1xx2 is equal to
∞
limx → 0 4x - 9xx4x + 9x is equal to
log23
log32
12log23
12log32
If z = secy - ax + tany + ax, ∂2z∂x2 - a2∂2z∂y2 is equal to
- z
z
2x