limx→01 - cosx221 - cosx24x8 = 2 - k, find k
The value of 0 . 16log2 . 513 + 132 + 133 + ... ∞ is
limx→aa + 2x13 - 3x133a + x13 - 4x13 a ≠ 0 = ?
292313
2343
2943
232913
Let f : 0, ∞ → 0, ∞ be a differentiable function such that f(1) = e and limt→x t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to
1e
2e
12e
e
limx→0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1
does not exist
is equal to 1
is equal to e
is equal to 0
A limx→1∫0x - 12tcost2dtx - 1sinx - 1 = ?
1
12
- 12
If [x] denotes the greatest integer not exceeding x and if the function f defined by
fx = a + 2cosxx2, x< 0btanπx + 4, x ≥ 0
is continuous at x = 0, then the ordered pair(a, b) is equal to
(- 2, 1)
(- 2, - 1)
- 1, 3
- 2, 3
If y = 1 +x1 + x21 + x4 . . . 1 + x2n,then dydxx = 0 = ?
0
2
The quadratic equation whose roots are l and m,where l = limθ → 0 3sinθ - 4sin2θθ,m = limθ → 0 2tanθθ 1 - tan2θ is
x2 + 5x + 6
x2 - 5x + 6
x2 - 5x - 6
x2 + 5x - 6
B.
We have,l = limθ→03sinθ - 4sin2θθUsing L-hospital rule = limθ→0 3cosθ - 8sinθcosθ1 = 3and m = limθ→02tanθ1 -tan2θ = limθ→0 tan2θθ = limθ→0 tan2θ2θ = 2The required quadratic equation is⇒ x2 - l + mx +lm = 0⇒ x2 - 3 + 2x + 3 . 2 = 0 x2 - 5x + 6 = 0
limx→01 + 1 + x2 - 2x - 8 = ?
32
14
124
112