limx→0 ex - esinx2x - sinx
- 12
12
1
32
If f(x) = sin1 + xx, for x ≠ 00 , for x = 0
where [x] denotes the greatest integer not exceeding x, then limx→0-fx is equal to
- 1
0
2
If f(x) = x - 5, for x ≤ 14x2 - 9, for 1 < x < 23x + 4, for x ≥ 2
then f'(2+) is equal to
3
4
If 2x2 - 3xy + y2 + x + 2y - 8 = 0, then : dydx is equal to
3y - 4x - 12y - 3x + 2
3y - 4x + 12y + 3x + 2
3y - 4x + 12y - 3x - 2
If z = logtanx + tany, thensin2x∂z∂x + sin2y∂z∂y is equal to
limx→0 1 - exsinxx2 + x3 = ?
If R → R is defined by f(x) = x - 3 + x - 4 for x ∈ R, thenlimx→3 -f(x) = ?
- 2
If x = acosθ + logtanθ2 and y = asinθ, then dydx = ?
cotθ
tanθ
sinθ
cosθ
x = 1 - y1 + y ⇒ dydx is equal to
4x + 12
4x - 1x + 13
x - 11 + x3
41 + x3
B.
Given x = 1 - y1 + y Applying componendo and dividendo, we get1 + x1 - x = 1 + y + 1 - y1 + y - 1 - y⇒ 1 + x1 - x = 22y⇒ y = 1 - x1 + x2On differentiating w.r.t. x, we getdydx = - 21 + x21 - x - 1 - x2 . 21 + x1 + x4 = 4x - 1x + 13
limx→∞x + 5x + 2x + 3 equals
e
e2
e3
e5