If A is invertible matrix and B is any matrix, then from Mathema

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

161.

The values of x, y and z for the system of equations x + 2y + 3z = 6, 3x - 2y + z = 2 and 4x + 2y + z = 7 are respectively

  • 1, 1, 1

  • 1, 2, 3

  • 1, 3, 2

  • 2, 3, 1


162.

If A and B are square matrices of the same order and A is non-singular, then for a positive integer n, (A-1BA)n is equal to

  • A-nBnAn

  • AnBnA-n

  • A-1BnA

  • n(A-1BA)


163.

If a2 + b2 + c2 = - 2 and f(x) = 1 +a2x1 +b2x1 +c2x1 +a2x1 +b2x1 +c2x1 +a2x1 +b2x1 +c2x then f(x) is a polynomial of degree

  • 3

  • 2

  • 1

  • 0


164.

If A = 1- 1102- 3210 and B = (adj A), and C = 5A, then adj BC is

  • 5

  • 25

  • - 1

  • 1


Advertisement
165.

If matrix A = 10- 1345067 and its inverse is denoted by A-1a11a12a13a21a22a23a31a32a33, then the value of a23 is

  • 2120

  • 15

  • - 25

  • 25


166.

The number of solutions of the system of equations 2x + y - z = 7, x - 3y + 2z = 1 and x + 4y - 3z = 5 is

  • 3

  • 2

  • 1

  • 0


167.

The value of 1- tanθ4tanθ411tanθ4- tanθ41-1 is

  • cosθ2sinθ2- sinθ2cosθ2

  • cosθ2- sinθ2sinθ2cosθ2

  • sinθ2cosθ2cosθ2sinθ2

  • sinθ2- cosθ2cosθ2sinθ2


168.

The value of λ and µ for whichi the simultaneous equation x + y + z = 6, x + 2y + 3z = 10 and x + 2y + λz = µ have a unique solution are

  • λ  3

  • μ = 3 only

  • λ = 3 and μ = 3

  • λ  3 and μ can take any value.


Advertisement
169.

If X is any matrix of order n x p (n and p are integers) and I is an identity matrix of order nxn, then the matrix M = I -  X(X'X)-1X' is

(i) idempotent matrix (ii) MX = 0

Choose the correct answer

  • (i) is correct

  • (ii) is correct

  • (i) is incorrect

  • (ii) is incorrect


Advertisement

170.

If A is invertible matrix and B is any matrix, then

  • Rank (AB) = Rank(A)

  • Rank (AB) = Rank (B)

  • Rank (AB) > Rank (A)

  • Rank (AB) > Rank (B)


B.

Rank (AB) = Rank (B)

Since, A is invertible  A-1 exists.Now, Rank B = Rank A-1AB          Rank AB           Rank PQ  Rank QBut, Rank AB  Rank B   Rank AB = Rank B


Advertisement
Advertisement