sinαcosαsinα + δsinβcos&be

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

If A and B are symmetric matrices of the same order, then which one of the following is not true ?

  • A + B is symmetric

  • A - B is symmetric

  • AB + BA is symmetric

  • AB - BA is symmetric


222.

If w is an imaginary cube root of unity, then the value 1w21 - w4w11 + w51ww2 is

  • - 4

  • w2 - 4

  • w2

  • 4


223.

G = xxxx, x is a non-zero real number is a roup with respect to matrix multiplication. In this group, the inverse of 13131313 is

  • 43434343

  • 34343434

  • 3333

  • 1111


Advertisement

224.

sinαcosαsinα + δsinβcosβsinβ + δsinγcosγsinγ + δ is equal to

  • 0

  • 1

  • 1 + sinαsinβsinγ

  • 1 - sinα - sinβsinβ - sinγsinγ - sinα


A.

0

Given, sinαcosαsinα + δsinβcosβsinβ + δsinγcosγsinγ + δ= sinαcosαsinα . cosδ + cosα . sinδsinβcosβsinβ . cosδ + cosβ . sinδsinγcosγsinγ . cosδ + cosγ . sinδ= sinαcosαsinα . cosδsinβcosβsinβ . cosδsinγcosγsinγ . cosδ + sinαcosαcosα . sinδsinβcosβcosβ . sinδsinγcosγcosγ . sinδ= cosδsinαcosαsinαsinβcosβsinβsinγcosγsinγ + sinδsinαcosαcosαsinβcosβcosβsinγcosγcosγ= cosδ × 0 + sinδ × 0       C1 and C2 are identical, C2 and C3 identcal= 0


Advertisement
Advertisement
225.

If ax4 + bx3 + cx2 + dx + e = x3 + 3xx - 1x +3x + 1- 2xx - 4x - 3x + 43x, then e is equal to

  • 1

  • 0

  • 2

  • - 1


226.

If A and B are square matnces of order n such that A2 - B2 = (A - B) (A + B), then which of the following will be true?

  • Either A or B is zero matrix

  • A = B

  • AB = BA

  • Either A or B is identity matrix


227.

If A = α22α and A3 = 125, then α is equal to

  • ± 1

  • ± 2

  • ± 3

  • ± 5


228.

If the matrix 235- 1 = A + B, where A is symmetric and B is skew - symmetric, then B is equal to

  • 244- 1

  • 0- 220

  • 01- 10

  • 0- 110


Advertisement
229.

If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined, then B is of the type

  • 4 × 4

  • 3 × 4

  • 4 × 3

  • 3 × 3


230.

The symmetric part of the matrix A = 1246822- 27 is

  • 0- 2- 1- 20- 2- 1- 20

  • 143280307

  • 0- 2- 1202- 120

  • 143480307


Advertisement