2ax1y12bx2y22cx3y3 = abc2 ≠ 0, then the ar

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

The inverse ofthe matrix A = 200030004 is

  • 124200030004

  • 200030004

  • 124100010001

  • 120001300014


232.

If a, b and c are in AP, then the value of x + 2x + 3x + ax + 4x + 5x +bx +6x + 7x + c is

  • 0

  • x - (a + b + c)

  • a + b + c

  • 9x2 + a + b + c


233.

If A = α22α and a3 = 27, then α is equal to

  • ± 7

  • ± 1

  • ± 5

  • ± 2


Advertisement

234.

2ax1y12bx2y22cx3y3 = abc2  0, then the area of triangle whose vertices are x1a, y1a, x2b, y2b, x3c, y3c, is

  • 14

  • 14abc

  • 18

  • 18abc


C.

18

Area of triangle whose vertices arex1a, y1a, x2b, y2b, x3c, y3c = 12x1ay1a1x2by2b1x3cy3c1On multiplying R1, R2 and R3 by a, b, c respectively, we get = 12abcx1y1ax2y2bx3y3cOn multiplying C3 by 2, we get = 14abcx1y12ax2y22bx3y32cOn applyng C1  C3, we get = - 14abc2ay1x12by2x22cy3x3On applyng C2  C3, we get = 14abc2ax1y12bx2y22cx3y3    = 14abc . abc2   2ax1y12bx2y22cx3y3 = abc2    = 18


Advertisement
Advertisement
235.

Evaluate cos15sin15sin75cos75

  • 2

  • 1

  • 3

  • 0


236.

The system of linear equations x + y + z = 6,
x + 2y + 3z = 10 and x + 2y + az = b has no solution when

  • b = 2, a = 3

  • a = 2, b  3

  • b = 3, a  10

  • a = 3, b  10


237.

If A = 0110, then A2 is equal to

  • 1001

  • 0110

  • 0101

  • 1010


238.

If x, y,z are all different and not equal to zero and 1+ x1111 + y1111 + z = 0, then the value of x-1 + y-1 + z-1 is equal to

  • xyz

  • x-1y-1z-1

  • - x - y - z

  • - 1


Advertisement
239.

If A is any square matrix of order 3 x 3, then 3A is equal to

  • 3A

  • 13A

  • 27A

  • 9A


240.

If A = 1πsin-1πxtan-1xπsin-1xπcot-1πx, B = 1π- cos-1πxtan-1xπsin-1xπ- tan-1πx, then A - B is equal to

  • I

  • 0

  • 2I

  • 12I


Advertisement