If A = 1πsin-1πxtan-1xπsin-1xπcot-1πx, B =&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

The inverse ofthe matrix A = 200030004 is

  • 124200030004

  • 200030004

  • 124100010001

  • 120001300014


232.

If a, b and c are in AP, then the value of x + 2x + 3x + ax + 4x + 5x +bx +6x + 7x + c is

  • 0

  • x - (a + b + c)

  • a + b + c

  • 9x2 + a + b + c


233.

If A = α22α and a3 = 27, then α is equal to

  • ± 7

  • ± 1

  • ± 5

  • ± 2


234.

2ax1y12bx2y22cx3y3 = abc2  0, then the area of triangle whose vertices are x1a, y1a, x2b, y2b, x3c, y3c, is

  • 14

  • 14abc

  • 18

  • 18abc


Advertisement
235.

Evaluate cos15sin15sin75cos75

  • 2

  • 1

  • 3

  • 0


236.

The system of linear equations x + y + z = 6,
x + 2y + 3z = 10 and x + 2y + az = b has no solution when

  • b = 2, a = 3

  • a = 2, b  3

  • b = 3, a  10

  • a = 3, b  10


237.

If A = 0110, then A2 is equal to

  • 1001

  • 0110

  • 0101

  • 1010


238.

If x, y,z are all different and not equal to zero and 1+ x1111 + y1111 + z = 0, then the value of x-1 + y-1 + z-1 is equal to

  • xyz

  • x-1y-1z-1

  • - x - y - z

  • - 1


Advertisement
239.

If A is any square matrix of order 3 x 3, then 3A is equal to

  • 3A

  • 13A

  • 27A

  • 9A


Advertisement

240.

If A = 1πsin-1πxtan-1xπsin-1xπcot-1πx, B = 1π- cos-1πxtan-1xπsin-1xπ- tan-1πx, then A - B is equal to

  • I

  • 0

  • 2I

  • 12I


D.

12I

We have, A = 1πsin-1πxtan-1xπsin-1xπcot-1πxand B = 1π- cos-1πxtan-1xπsin-1xπ- tan-1πx A - B = 1πsin-1πx + cos-1πxtan-1xπ - tan-1xπsin-1xπ - sin-1xπcot-1πx + tan-1πx               = 1ππ200π2   sin-1x + cos-1x = π2and cot-1x + tan-1x = π2               = 120012 = 121001 = 12I


Advertisement
Advertisement