If A is a non-zero square matrix of order n with det (I + A) ≠ 0 and A3 = 0, where I, 0 are unit and null matrices of order n x n respectively, then (I + A)- 1 is equal to
I - A + A2
I + A + A2
I + A - 1
I + A
A.
Given, I + A ≠ 0ie, A + I is a non-singular matrixO → Null matrix I → Unit matrix∵ I3 = I⇒ A3 = 0⇒ A3 + I = 0 + I⇒ A3 + I3 = 0 + I⇒ A + IA2 - A + I = 0 + IA + IA2 - A + I = I ∵ 0 + I = IOperate A + I- 1 on both sidesA + I- 1 A + IA2 - A + I = A + I - 1 I⇒ IA2 - A + I = A + I - 1 ∵ IA + I - 1 = A + I - 1 ⇒ A + I - 1 = A2 - A + Ior I + A - 1 = I - A + A2
If x is real, then the value of x2 - 3x + 4x2 + 3x + 4 lies in the interval
13, 3
15, 5
16, 6
17, 7
Aα, β = cosαsinα0- sinαcosα000eβ ⇒ Aα, β - 1 =
A - α, β
A - α, - β
Aα, - β
Aα, β
If A is a matrix such2132A11 = 1100 then A = ?
1101
21
10- 11
2- 3
A = 101011010 ⇒ A2 - 2A =?
A - 1
- A - 1
I
- I
242526252627262727 = ?
0
- 1
1
2
A = i- i- ii, B = 1- 1- 11 ⇒ A8
4B
8B
64B
128B
Let A = - 1- 2- 3345456, B = 1- 2- 12 and C = 200020002, if a, b and c respectively, denote the rank of A, B, and C, then the correct order of these number is
a < b < c
c < b < a
b < a < c
a < c < b
If I is the identity matrix of order 2 and A =1101, then for n ≥ 1, mathematical induction gives
An = nA - n - 1I
An = nA + n - 1I
An = 2nA - n + 1I
An = 2n - 1A - n - 1I
If A = - 8524 satisfies the equation x2 + 4x - p = 0, then p is equal to
64
42
36
24