10 men and 6 women are to be seated in a row so that no two women

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

The number of five digit numbers divisible by 5 that can be formed using the numbers 0, 1, 2, 3, 4, 5 without repetition is

  • 240

  • 216

  • 120

  • 96


62.

P815 = A + 8 . P714  A = 

  • P614

  •  P814

  •  P715

  •  P916


63.

If C1n - 1 + C4n - 1 > C3n, then the minimum value of n is 

  • 5

  • 6

  • 7

  • 8


64.

If fx = x2 - 17, then f14x = ?

  • 0

  • 2!

  • 7!

  • 14!


Advertisement
65.

If  nCr - 1 = 330,  Crn = 462, and nCr + 1 = 462, then r = ?

  • 3

  • 4

  • 5

  • 6


Advertisement

66.

10 men and 6 women are to be seated in a row so that no two women sit together. The number of ways they can be seated, is

  • 11! 10!

  • 11!6! 5!

  • 10! 9!5!

  • 11! 10!5!


D.

11! 10!5!

M M M M M M M M M M W W W W W W W W W WFirst, we range 10 men in a row at alternate positionSo, number of ways formula = 10!Now, 6 women can arrange in 11 posItIonsSo, number of ways for women =P611Required number of ways= 10! × P611=10! 11!5!


Advertisement
67.

If tn denotes the number of triangles formed with n points in a plane, no three of which are collinear and if tn + 1 - tn= 36, then n is equal to

  • 7

  • 8

  • 9

  • 10


68.

The term independent of xx > 0, x  1 in the expansion of x + 1x23 - x13 + 1 - x - 1x - x10 is

  • 105

  • 210

  • 315

  • 420


Advertisement
69.

Out of thirty points in a plane, eight of them are collinear. The number of straight lines that can be formed by joining these points, is

  • 296

  • 540

  • 408

  • 348


70.

If n is an integer with 0  n  11, then the minimum value of n!(11 - 1)! is attained when a value of n equals to

  • 11

  • 5

  • 7

  • 9


Advertisement