Let f : N → Y be a function defined as f (x) = 4x + 3, where Y = {y ∈ N : y = 4x + 3 for some x ∈ N}.Show that f is invertible and its inverse is
Let R be the real line. Consider the following subsets of the plane R × R.
S = {(x, y) : y = x + 1 and 0 < x < 2}, T = {(x, y) : x − y is an integer}. Which one of the following is true?
neither S nor T is an equivalence relation on R
both S and T are equivalence relations on R
S is an equivalence relation on R but T is not
S is an equivalence relation on R but T is not
Let f(x) = Then which one of the following is true?
f is neither differentiable at x = 0 nor at x = 1
f is differentiable at x = 0 and at x = 1
f is differentiable at x = 0 but not at x = 1
f is differentiable at x = 0 but not at x = 1
The largest interval lying in for which the function is defined, is
[0, π]
[-π/4, π/2)
[-π/4, π/2)
Let f : R → R be a function defined by f(x) = Min {x + 1, |x| + 1}. Then which of the following is true ?
f(x) ≥ 1 for all x ∈ R
f(x) is not differentiable at x = 1
f(x) is differentiable everywhere
f(x) is differentiable everywhere
The function f: R ~ {0} → R given by
can be made continuous at x = 0 by defining f(0) as
2
-1
1
1
The number of values of x in the interval [0, 3π] satisfying the equation 2sin2 x + 5sinx − 3 = 0 is
4
6
1
1
The set of points where x f(x) = x /1+|x| is differentiable is
(−∞, 0) ∪ (0, ∞)
(−∞, −1) ∪ (−1, ∞)
(−∞, ∞)
(−∞, ∞)
Let R = {(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)} be a relation on the set A = {3, 6, 9, 12} be a relation on the set A = {3, 6, 9, 12}. The relation is
reflexive and transitive only
reflexive only
an equivalence relation
an equivalence relation
A.
reflexive and transitive only
Reflexive and transitive only.
e.g. (3, 3), (6, 6), (9, 9), (12, 12) [Reflexive]
(3, 6), (6, 12), (3, 12) [Transitive].
Let f : (-1, 1) → B, be a function defined by then f is both one-one and onto when B is the interval
[0, π/2)