The domain of the function f(x) = 7 - 3x +&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

Let ϕx = bx - ab - a + ax - ba - b, where x  R and a and b are fixed real numbers with a  b. Then, ϕa + b is equal to

  • ϕab

  • ϕ- ab

  • ϕa + ϕb

  • ϕa - b


222.

The range of the function f(x) = x2 + 8x2 + 4, x  R is

  • - 1, 32

  • (1, 2]

  • (1, 2)

  • [1, 2]


223.

If n(A) = 1000, n(B) = 500 and if n(A  B) 1 and  nA  B = p, then

  • 500  p  1000

  • 1001  p  1498

  • 1000  p  1498

  • 1000  p  1499


224.

The domain of the function fx = sin-1x + 52 is

  • [- 1, 1]

  • [2, 3]

  • [3, 7]

  • [- 7, - 3]


Advertisement
225.

If f(x) = x + 1 and g(x) = 2x, then f{g(x)} is equal to

  • 2(x + 1)

  • 2x(x + 1)

  • x

  • 2x + 1


226.

The domain of the function f(x) = log2x +3x2 + 3x +2 is

  • R - {- 1, - 2}

  • R - {- 1, - 2, 0}

  • (- 3, - 1) ∪ (- 1, )

  • (- 3, ) - {- 1, - 2}


227.

If * is defined by a * b = a - b2 and is defined by a b = a2 + b, where a and b are integers, then (3 4) * 5 is equal to

  • 164

  • 38

  • - 12

  • - 28


228.

The image of the interval [- 1, 3] under the mapping f : R  R given by f(x) = 4x3 - 12x is

  • [8, 72]

  • [0, 72]

  • [- 8, 72]

  • [0, 8]


Advertisement
229.

If the operation is defined by a b = a2 + b2 for all real numbers a and b, then (2  3) 4 is equal to

  • 120

  • 185

  • 175

  • 129


Advertisement

230.

The domain of the function f(x) = 7 - 3x + logex is

  • 0 < x < 

  • 73  x < 

  • 0 < x  73

  • -  < x < 0


C.

0 < x  73

f(x) = 7 - 3x + logexLet gx = 7 - 3x and hx = logexNow, domain of g( x) is7 - 3x  0  x  73and domain of h( x) is x > 0. Domain of f(x) = Domain of g(x)  Domain of h(x) = (0, 73]


Advertisement
Advertisement