The positive root of x2 - 78.8 = 0 after first approximation by N

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

Let f(x) = ax(a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals :

  • 2f1(x)f1(y)

  • 2f1(x + y)f1(x - y)

  • 2f1(x + y)f2(x - y)

  • 2f1(x)f2(y)


252.

If the function f : R - 1, - 1  A defined by fx = x21 - x2, is surjective, then A is equal to :

  • R - (- 1, 0)

  • R - [- 1, 0)

  • - {- 1}

  • [0, )


253.

Let k = 10fa + k = 16210 - 1, where function satisfies f(x + y) = f(x)f(y) for all natural numbers x, y and f(1) = 2 . Then the natural number ‘a’ is

  • 16

  • 22

  • 20

  • 25


254.

If f(1) = 10, f(2) = 14, then using Newton's forward formula f(1.3) is equal to 

  • 12.2

  • 11.2

  • 10.2

  • 15.2


Advertisement
255.

Let f(x) = ax +bcx +d. Then, fof(x) = x provided that

  • d = - a

  • d = a

  • a = b = c =  d = 1

  • a = b = 1


Advertisement

256.

The positive root of x2 - 78.8 = 0 after first approximation by Newton Raphson method assuming initial approximation to the root is 14, is

  • 9.821

  • 9.814

  • 9.715

  • 9.915


B.

9.814

Here, x0 = 14, fx = x2 - 78.8 and f'x 2x     x1 = x0 - fx0f'x0             = 14 - 142 - 78.82 × 14 = 9.814


Advertisement
257.

In the usual notation the value of  is equal to

  •  -

  •  + 

  •  - 

  • None of the above


258.

The value of f(4) - f(3) is

  • f2 + 2f1 + 3f1

  • f3 + 2f2 + 3f1

  • f2 + 2f1 + 3f0

  • None of these


Advertisement
259.

1 + nfa is equal to

  • f(a + h)

  • f(a + 2h)

  • f(a + nh)

  • f(a + (n - 1)h)


260.

Simplify the Boolean function (x · y) + [(x + y') - y]'.

  • 0

  • 1

  • x + y

  • xy


Advertisement