By Newton-Raphson method, the positive root of the equation x4 -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

311.

If f(x) = 2x - 1x +5; x  - 5, then f-1(x) is equal to

  • x + 52x - 1, x  12

  • 5x + 12 - x, x  2

  • x - 52x + 1, x  12

  • 5x - 1x - 2, x  2


312.

A· {(B + C) x (A + B + C)} equals

  • [A B C]

  • [B A C]

  • 0

  • 1


313.

Which is incorrect ?

  • (AB)' = B'A'

  • ABθ = BAAθ

  • AB = B A

  • AB-1 = B-1A-1


314.

Cube root of 18 by using Newton-Raphson method will be

  • 2.26

  • 2.620

  • 2.602

  • None of these


Advertisement
315.

The difference of the numbers (1100110011)2 and (1101001011)2 in binary system is

  • (100000)2

  • (101010)2

  • (11000)2

  • (10111)2


316.

If the function f · f . [1, )  [1, ) is defined by f(x) = 2x(x - 1), then f-1(x) is defined by

  • 12xx - 1

  • 121 ± 4log2x

  • 121 - 1 - 4log2x

  • None of these


Advertisement

317.

By Newton-Raphson method, the positive root of the equation x4 - x - 10 = 0 is

  • 1.871

  • 1.868

  • 1.856

  • None of these


A.

1.871

Given, fx = x4 - x - 10We assume x0 = 2 is the approximate root of f(x)Then, h = - fx0f'x0 = - f2f'2     h = - 24 - 2 - 10423 - 1     h = - 16 - 1231 = - 431     h = - 0.129 Positive square root of f(x) by Newton-Raphson method        x1 = x0 + h = 2 + - 0.129            = 2 - 0.129 = 1.871


Advertisement
318.

Which of the following function is inverse of itself

  • fx = 1 - x1 + x

  • g(x) = 5log(x)

  • h(x) = 2x(x - 1)

  • None of the above


Advertisement
319.

Let f : R  R be the function defined by f(x) = x - 3 , x  R. Then f-1(x) = ?

  • x + 3

  • x2 + 3

  • x + 32

  • x2 + 32


320.

Let Z denote the set of integers define f : Z  Z by f(x) = x2, x is even0,   x is odd, then f is

  • onto but not one-one

  • one-one but not onto

  • one-one and onto

  • neither one-one nor onto


Advertisement