If A1, A2; G1, G2 and H1, H2 be two AM's, GM's and HM's betw

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

If the arithmetic mean of a and b is an + bnan - 1 + bn - 1, then the value of n is

  • - 1

  • 0

  • 1

  • None of the above


112.

12! + 14! + 16! + ...1 + 13! + 15! + ... equals

  • e + 1

  • e - 1e + 1

  • e - 1

  • None of these


113.

The sum of the series

a - ba + 12a - ba2 + 13a - ba3 + ...  is

  • logeab

  • logea - ba

  • logeba

  • None of these


114.

The harmonic mean of the roots of the equation

5 + 2x2 - 4 + 5x + 8 + 25 = 0 is

  • 2

  • 4

  • 6

  • 8


Advertisement
115.

The sum of n terms of the following series 1 + (1 + x) + (1 + x + x2) +... will be

  • 1 - xn1 - x

  • x1 - xn1 - x

  • n1 - x - x1 - xn1 - x2

  • None of the above


Advertisement

116.

If A1, A2; G1, G2 and H1, H2 be two AM's, GM's and HM's between two quantities, then the value of G1G2H1H2 is

  • A1 + A2H1 + H2

  • A1 - A2H1 + H2

  • A1 + A2H1 - H2

  • A1 - A2H1 - H2


C.

A1 + A2H1 - H2

Let the two quantities be a and b. Then a, A1, A2, b are in AP.

 A1 - a = b - A2 A1 + A2 = a +b                     ...(i)Again a, G1, G2 , b are in GP. G1a = bG2  G1G2 = ab       ...(ii)Also, a, H1, H2, b are in HP. 1H1 - 1a = 1b - 1H2 1H1 + 1H2 = 1b + 1a H1 + H2H1H2 = a + bab H1 + H2H1H2 = A1 + A2G1G2                           using Eqs. (i) and (ii)] G1G2H1H2 = A1 + A2H1 + H2


Advertisement
117.

12 + 1 + 22 + 2 + 32 + 3 + ... + n2 + n is equal to

  • nn + 12

  • nn + 122

  • nn + 1n + 23

  • nn + 1n + 2n + 34


118.

21/4 . 41/8 . 81/16 . 161/32 ... is equal to

  • 1

  • 2

  • 32

  • 52


Advertisement
119.

The sum of the series

- 1rCrn12r + 3r22r + 7r23r + 15r24r + ... m terms is

  • 2mn - 12mn2n - 1

  • 2mn - 12n - 1

  • 2mn + 12n + 1

  • None of these


120.

If n = (1999)!, Then x = 11999lognx is equal to

  • 1

  • 0

  • 19991999

  • - 1


Advertisement