If H is the harmonic mean between P and Q, then the value of 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

121.

Let a, b and c be in AP and a < 1, b < 1, c < 1. If x = 1 + a + a2 + ... to , y = 1 + b + b2 + ... to , z = 1 + c + c2 + ... to , then x, y and z are in

  • AP

  • GP

  • HP

  • None of these


122.

The sum of the series

1 + 12 + 222! + 12 + 22 + 323! + 12 + 22 + 32 + 424! + ... is

  • 3e

  • 176e

  • 136e

  • 196e


123.

For a GP, an = 3(2n), ∀ n ∈ N. Find the common ratio

  • 2

  • 1/2

  • 3

  • 1/3


124.

If a, b, c are in HP, then ab + c, bc + a, ca + b will be in

  • AP

  • GP

  • HP

  • None of these


Advertisement
125.

The sum of the coefficients of (6a - 5b)n, where n is a positive integer, is

  • 1

  • - 1

  • 2n

  • 2n - 1


126.

If ax = by = cz = du and a, b, c, d are in GP, then x, y, z, u are in

  • AP

  • GP

  • HP

  • None of these


127.

If x is numerically so small so that x2 and higher power of x can be neglected, then 1 + 2x332 . 32 + 5x- 15 is approximately equal to

  • 32 + 31x64

  • 31 + 32x64

  • 31 - 32x64

  • 1 - 2x64


128.

If the sides of a right angle triangle form an AP, the 'sin' of the acute angles are

  • 35, 45

  • 3, 13

  • 5 - 12, 5 - 12

  • 3 - 12, 3 - 12


Advertisement
Advertisement

129.

If H is the harmonic mean between P and Q, then the value of HP + HQ is

  • 2

  • PQP +Q

  • 12

  • P +QPQ


A.

2

 H is the harmonic mean between P and Q. H = 2PQP+Q HP = 2QP+Q and HQ = 2PP+Q HP + HQ = 2QP+Q + 2PP+Q = 2P + QP + Q                    = 2


Advertisement
130.

The value of 23! + 45! + 67! + ...

  • e

  • 2e

  • e2

  • 1e


Advertisement