If a, b, c are in arithmetic progression, then abc, 1c,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

151.

If a, b, c are in arithmetic progression, then abc, 1c, 2b will be in

  • arithmetic proression

  • geometric progression

  • harmonic progresssion

  • None of the above


D.

None of the above

We have a, b, c are in APLet a = 1, b = 2, c=3Now, abc = 16          1c = 13          2b = 1Now, we have 16, 13, 1         23  16 + 1 abc, 1c, 2b are not in AP.Since, 19  16 × 1 so, also not in GP.Since, 2 × 3  6 + 1 so, also not in HP. abc, 1c, 2b are not in AP, GP or HP.


Advertisement
152.

If G is the geometric mean of x and y, then 1G2 - x2 + 1G2 - y2 will be

  • - G2

  • - 1G2

  • 1G2

  • G2


153.

If a > 1, b > 1 and c > 1 are in geometric progression, then 11 + logea, 11 + logeb, 11 + logec will be in

  • arithmetic proression

  • geometric progression

  • harmonic progresssion

  • None of the above


154.

The lines 2x + 3y = 6 , 2x + 3y = 8 cut the X-axis at A and B, respectively. A line L drawn through the point (2, 2) meets the X-axis as C in such away that abscissae of A, B and C are in arithmetic progression. Then, the equation of the line L is

  • 2x + 3y = 10

  • 8x + 2y = 10

  • 2x - 3y = 10

  • 8x - 2y = 10


Advertisement
155.

If the polar of a point on the circle x2 + y2 = p2 with respect to the circle x2 + y2 = q2 touches the circle x2 + y2 = r, then p, q, r are in

  • AP

  • GP

  • HP

  • AGP


156.

If 23 + 43 + 63 + ... + 2(n)3 = hn2(n + 1)2, then h is equal to

  • 12

  • 1

  • 32

  • 2


157.

1 + 14 + 14 . 38 + 14 . 38 . 512  + . . . is equal to 

  • 2

  • 12

  • 3

  • 13


158.

22! + 2 + 43! + 2 + 4 + 64! +  ...is equal to

  • e

  • e - 1

  • e - 2

  • e - 3


Advertisement
159.

The roots of the equation x3 - 14x2 + 56x - 64 = 9 are in

  • AGP

  • HP

  • AP

  • GP


160.

1 + 1 + 22! + 1 + 2 + 223! + ... is equal to

  • e2 + e

  • e2

  • e2 - 1

  • e2 - e


Advertisement