If pth, qth, rth terms of a geometric progression are the positiv

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

If X is a poisson variate such that a = P(X = 1) = P(X = 2), then P(X = 4) is equal to

  • 2α

  • α3

  • αe - 2

  • αe2


Advertisement

192.

If pth, qth, rth terms of a geometric progression are the positive numbers a, b and c respectively,then the angle· between the vectors (log(a))2i + (log(b))2j + (log(c))2k and (q - r)i + (r - p)j + (p - q)k is

  • π3

  • π2

  • sin-11a2 + b2 + c2

  • π4


B.

π2

Let first term of a GP be u and common ratio z Tp = uzp - 1 = a logu + p - 1logz = loga   ... iTq = uzq - 1 = b logu + q - 1logz = logb   ... iiand Tr = uzr - 1 = c logu + r - 1logz = logc   ... iiiLet θ be the angle betweenloga2i + logb2j + loga2k iscosθ = loga2q - r+ logb2(r - p) + loga2(p - q) loga22 + logb22 + loga22q - r2 + r - p2 + p - q2   ...ivFrom eqs. i, ii and iiiq - r = logb - logc, r - p = logc - logbp - q = loga - logb

 From eqs. i, ii and iiiq - r = logb - logc, r - p = logc - logap - q = loga - logb = 0 From eq i, we getcosθ = 0  θ = π2


Advertisement
193.

If x is small, so that x2 and higher powers can be neglected, then the approximate value for 1 - 2x - 11 - 3x - 21 - 4x - 3 is

  • 1 - 2x

  • 1 - 3x

  • 1 - 4x

  • 1 - 5x


194.

If 1x4 + x2 + 1 = Ax +Bx2 + x +1  + Cx + Dx2 - x +1, then C + D = ?

  • - 1

  • 1

  • 2

  • 0


Advertisement
195.

If the roots of x3 - 42x2 + 336x - 512 = 0, are in increasing geometric progression, then its common ratio is

  • 2 : 1

  • 3 : 1

  • 4 : 1 

  • 6 : 1


196.

The equation of the pair of lines passing through the orign whose sum and product of slopes are respectively the arithmetic mean and geometric mean of 4 and 9 is

  • 12x2 - 13xy + 2y2 = 0

  • 12x2 + 13xy + 2y2 = 0

  • 12x2 - 15xy + 2y2 = 0

  • 12x2 + 15xy - 2y2 = 0


197.

The equation x2 - 5xy + py2 + 3x - 8y + 2 = 0 represents a pair of straight lines. If θ is the angle between them, then sinθ is equal to

  • 150

  • 17

  • 15

  • 110


198.

k = 12n + 1- 1k - 1 . k2 = ?

  • (n - 1)(2n - 1)

  • (n + 1)(2n + 1)

  • (n + 1)(2n - 1)

  • (n - 1)(2n + 1)


Advertisement
199.

If a + bx - 3 = 127 + 13x + ... , then the ordered pair a, b = ?

  • (3, - 27)

  • 1, 13

  • (3, 9)

  • (3, - 9)


200.

The value of the sum 1 · 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 +  ... upto n terms is equal to

  • 16n22n2 + 1

  • 16n2 - 12n - 12n + 3

  • 18n2 + 1n2 +5

  • 14nn +1n + 2n + 3


Advertisement