If the line  and  intersect, then k is equal to from Mathem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

Let C be the circle with centre at(1,1) and radius 1. If T is the circle centred at (0,y) passing through origin and touching the circle externally, then the radius of T is equal to

  • fraction numerator square root of 3 over denominator square root of 2 end fraction
  • fraction numerator square root of 3 over denominator 2 end fraction
  • 1/2

  • 1/2

395 Views

2.

The image of line fraction numerator straight x minus 1 over denominator 3 end fraction space equals space fraction numerator straight y minus 3 over denominator 1 end fraction space equals space fraction numerator straight z minus 4 over denominator negative 5 end fraction in the plane 2x-y+z+3 =0 is the line

  • fraction numerator straight x plus 3 over denominator 3 end fraction space equals space fraction numerator straight y minus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction
  • fraction numerator straight x plus over denominator negative 3 end fraction space equals space fraction numerator straight y minus 5 over denominator negative 1 end fraction space equals space fraction numerator begin display style straight z plus 2 end style over denominator 5 end fraction
  • fraction numerator straight x minus 3 over denominator 3 end fraction space equals space fraction numerator straight y plus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction
  • fraction numerator straight x minus 3 over denominator 3 end fraction space equals space fraction numerator straight y plus 5 over denominator 1 end fraction space equals space fraction numerator straight z minus 2 over denominator negative 5 end fraction
382 Views

3.

A bird is sitting on the top of a vertical pole 20m high and its elevation from a point O n the ground is 45o. It flies off horizontally straight away from the point O. After 1s, the elevation of the bird from O is reduced to 30o. Then, the speed (in m/s of the bird is

  • (40 square root of 2 minus end root space 1

  • 40 left parenthesis square root of 3 space space end root space minus space square root of 2 right parenthesis
  • 20 space square root of 2
  • 20 space square root of 2
211 Views

4.

A ray of light along straight x space plus square root of 3 straight y end root space equals space square root of 3 get reflected upon reaching X -axis, the equation of the reflected ray is 

  • straight y equals space straight x plus square root of 3
  • square root of 3 straight y end root space equals space straight x minus square root of 3
  • straight y space equals space square root of 3 straight x end root minus square root of 3
  • straight y space equals space square root of 3 straight x end root minus square root of 3
441 Views

Advertisement
5.

The number of values of k, for which the system of equations
(k+1) x + 8y = 4k
kx + (k+3)y = 3k -1
has no solution, is 

  • infinite 

  • 1

  • 2

  • 2

269 Views

6.

In a ∆PQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then the angle R is equal to

  • 5π/6

  • π/6

  • π/4

  • π/4

163 Views

7.

An equation of a plane parallel to the plane x – 2y + 2z – 5 = 0 and at a unit distance from the origin is

  • x – 2y + 2z – 3 = 0

  • x – 2y + 2z + 1 = 0

  • x – 2y + 2z – 1 = 0

  • x – 2y + 2z – 1 = 0

457 Views

8.

If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals

  • 29/5

  • 5

  • 6

  • 6

224 Views

Advertisement
Advertisement

9.

If the line fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals space fraction numerator straight z minus 1 over denominator 4 end fraction and fraction numerator straight x minus 3 over denominator 1 end fraction space equals fraction numerator straight y minus straight k over denominator 2 end fraction space equals space straight z over 1 intersect, then k is equal to

  • -1

  • 2/9

  • 9/2

  • 9/2


C.

9/2

To find value of 'k' of the given lines L1 and L2 are intersecting each other.
Let straight L subscript 1 space colon space fraction numerator straight x minus 1 over denominator 2 end fraction space equals space fraction numerator straight y plus 1 over denominator 3 end fraction space equals fraction numerator straight z minus 1 over denominator 4 end fraction space equals space straight p
and space straight L subscript 2 colon thin space fraction numerator straight x minus 3 over denominator 1 end fraction space equals space fraction numerator straight y minus straight k over denominator 2 end fraction space equals space fraction numerator straight z minus 0 over denominator 1 end fraction space equals space straight q
⇒ Any point P on line L1 is of type
P(2p+1), 3p-1, 4p+1) and any point Q on line L2 is of type Q (q+3, 2q+k, q).
Since, L1 and L2 are intersecting each other, hence, both points P and Q should coincide at the point of intersection, i.e, corresponding coordinates of P and Q should be same.
2p+1 =q +3,
3p-1 =2q +k
4p+1 = q
solving these we get value of p and q as
p = -3/2 and q = -5
Substituting the values of p and q in the third equation
3p-1 = 2q+k, we get
3 open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses minus 1 space equals space 2 space left parenthesis negative 5 right parenthesis space plus straight k
space straight k space equals space 9 over 2

157 Views

Advertisement
10.

Three numbers are chosen at random without replacement from {1, 2, 3, ...... 8}. The probability that their minimum is 3, given that their maximum is 6, is

  • 3/8

  • 1/5

  • 1/4

  • 1/4

206 Views

Advertisement