The angle between lines joining the origin to the point of inters

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The value of k so that x2 + y2 + kx + 4y + 2 = 0 and 2(x2 + y) - 4x - 3y + k = 0 cut orthogonally is

  • 103

  • - 83

  • - 103

  • 83


72.

If the lines x - 12 = y + 23 = z - 14 and x - 31 = y - k2 = z1 intersect, then the value of k is

  • 3/2

  • 7/2

  • - 2/7

  • - 3/2


73.

If α + β + γ =  and β + γ + δ = , α and δ are non-collinear, then α + β + γ + δ equals

  • 0

  • bδ

  • (a + b)γ


74.

The two lines x = my + n, z = py + q and x = m'y + n', z =p'y + q' are perpendicular to each other, if

  • mm' + pp' = 1

  • mm' + pp' = - 1

  • mm' + pp' = 1

  • mm' + pp' = - 1


Advertisement
75.

The shortest distance between the lines x - 73 = y + 4- 16 = z - 67 and x - 103 = y - 308 = 4 - z5 is

  • 2347 units

  • 28821 units

  • 2213 units

  • 23421 units


76.

Two lines x - 12 = y + 13 = z - 14 and x - 31 = y - k2 = z intersect at a point, if k is equal to

  • 29

  • 12

  • 92

  • 16


Advertisement

77.

The angle between lines joining the origin to the point of intersection of the line 3x + y = 2 and the curve y2 - x2 = 4 is

  • tan-123

  • π6

  • tan-132

  • π2


C.

tan-132

On homogenising y2 - x2 = 4 with the help of the line 3x + y = 2, we get

               y2 - x2 = 43x + y24           y2 - x2 = 3x2 + y2 + 23xy 4x2 + 23xy = 0On comparing with ax + 2hxy + by 2 = 0, we geta = 4, h = 3 and b = 0 The angle between the lines istanθ = 2 . h2 - aba + b = 23 - 04 + 0  θ = tan-132


Advertisement
78.

The line joining two points A(2, 0), B(3, 1) is rotated about A in anti-clockwise direction through an angle of 15°. The equation of the line in the now position, is

  • √3x - y - 2√3 = 0

  • x - 3√y - 2 = 0

  • √3x + y - 2√3 = 0

  • x - √3y - 2 = 0


Advertisement
79.

The line 2x + 6y = 2 is a tanent to the curve x2 - 2y2 = 4. The point of contact is

  • 4, - 6

  • 7, - 26

  • (2, 3)

  • 6, 1


80.

A straight line through the point A (3, 4) is such that its intercept between the axes is bisected at A. Its equation is

  • 3x - 4y + 7 = 0

  • 4x + 3y = 24

  • 3x + 4y = 25

  • x + y = 7


Advertisement