The polar equation of the line perpendicular to the line sin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

171.

The point of contact of the circlesx2 + y2 + 2x + 2y + 1 = 0 andx2 + y2 - 2x +2y + 1 = 0 is

  • (0 , 1)

  • (0, - 1)

  • (1, 0)

  • (- 1, 0)


Advertisement

172.

The polar equation of the line perpendicular to the line sinθ - cosθ = 1r and passing through the point 2, π6 is 

  • sinθ + cosθ = 3 + 1r

  • sinθ - cosθ = 3 + 1r

  • sinθ + cosθ = 3 - 1r

  • cosθ - sinθ = 3r


A.

sinθ + cosθ = 3 + 1r

Given polar equation of linesinθ - cosθ = 1r   . . . iand point 2, π6Let x = rcosθ = 2 . cosπ6 = 3and y = rsinθ = 2 . sinπ6 = 1The cartesian point is 3, 1Now, we can change the polar of line into cartesian formi.e., rsinθ - rcosθ  = 1 y - x = 1        . . . iiEquation of perpendicular line to eq. ii is y +x = λ             . . . iiiwhich passes through 3, 1λ = 3 + 1From eq. iii, we getx + y = 3 + 1Now, we convert this into polar formrsinθ + rcosθ = 3 + 1sinθ + cosθ = 3 + 1r


Advertisement
173.

The equation of a straight line passing through the point (1, 2) and inclined at 45° to the line y = x + 1 is

  • 5x + y = 7

  • 3x + y = 5

  • x + y = 3

  • x - y + 1 = 0


174.

The distance between the parallel lines given byx + 7y2 + 42x +7y - 42 = 0 is

  • 45

  • 42

  • 2

  • 102


Advertisement
175.

A straight line is equally inclined to all the three coordinate axes. Then, an angle made by the line with the y-axis is

  • cos-113

  • cos-113

  • cos-123

  • π4


176.

If p and q are the perpendicular distances from the origin to the straight lines xsecθ - ycosec(θ) = α and xcos(θ) + ysin(θ) = αcos(2θ), then

  • 4p2 + q2 = a2

  • p2 + q2 = a2

  • p2 + 2q2 = a2

  • 4p2 + q2 = 2a2


177.

If 2x + 3y =5 is the perpendicular bisector of the line segment joining the points A (1, 1/3) and B, then B is equal to

  • 2113, 4939

  • 1713, 3139

  • 713, 4939

  • 2113, 3139


178.

If the points (1, 2) and (3, 4) lie on the same side of the straight line 3x - 5y + a = 0, then a lies in the set

  • [7, 11]

  • R - [7, 11]

  • 7, 

  • - , 11


Advertisement
179.

If the equation ax2 + 2hxy + by2 +2gx + 2fy + c = 0represents a pair of, straight lines, then the square of the distance of their point of intersection from the origin is

  • ca + b - af2 - bg2ab - h2

  • ca + b + f2 + g2ab - h2

  • ca + b - f2 - g2ab - h2

  • ca + b - f2 - g2ab - h22


180.

The equation of a straight line; perpendicular to 8x - 4y = 6 and forming a triangle of area 6sq. units with coordinate axes, is

  • x - 2y = 6

  • 4x + 3y = 12

  • 4x + 3y + 24 = 0

  • 3x + 4y = 12


Advertisement