The area of a parallelogram with 3i^ + j^ -&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

If A(- 2, 1), B(2, 3) and C( - 2, - 4) are three points. Then the angle between BA and BC is

  • tan-123

  • tan-132

  • tan-113

  • tan-112


82.

In a ABCa + b + cb + c - ac + a - ba + b - c4b2c2 equals

  • cos2A

  • cos2B

  • sin2A

  • sin2B


83.

The angle between the lines whose direction cosines satisfy the equations l + m + n = 0, l2 + m2 - n2 = 0 is

  • π6

  • π4

  • π3

  • π2


84.

The plane through the point (- 1, - 1, - 1) and containing the line of intersection of the planes r . i^ + 3j^ - k^ = 0 and r . j^ + 2k^ = 0 is

  • r . i^ + 2j^ - 3k^

  • r . i^ + 4j^ + k^

  • r . i^ + 5j^ - 5k^

  • r . i^ + j^ + 3k^


Advertisement
85.

If θ is the angle between the lines AB and AC where A, B and C are the three points with coordinates (1, 2, - 1), (2, 0, 3), (3, - 1, 2) respectively, then 462 cosθ is equal to

  • 20

  • 10

  • 30

  • 40


86.

Let the pairs a, b and c, d each determine a plane. Then the planes are parallel, if :

  • a × c and b × d = 0

  • a × c . b × d = 0

  • a × b × c × d = 0

  • a × b . c × d = 0


Advertisement

87.

The area of a parallelogram with 3i^ + j^ - 2k^ and i^ - 3j^ + 4k^ as diagonal is :

  • 72

  • 73

  • 74

  • 75


D.

75

Since, the diagonals of a parallelogram are 3i^ + j^ - 2k^ and i^ - 3j^ + 4k^. Then the sides of a parallelogram are a = 2i^ - j^ + k^ and b = i^ + 2j^ - 3k^

Now, a × b = 2i^ - j^ + k^ × i^ + 2j^ - 3k^ = i^ + 7j^ + 5k^

Area of parallelogram  = a × b = 1 + 49 + 25 = 75


Advertisement
88.

In a ABC, if 3 - 1a = 2b, A = 3B, then C is

  • 60°

  • 120°

  • 30°

  • 45°


Advertisement
89.

The x - axis, y - axis and a line passing through the point A (6, 0) from a ABC. If A = 30°, then the area of the , in sq unit is

  • 63

  • 123

  • 43

  • 83


90.

The mid point of the line joining the points (- 10, 8) and (- 6, 12)divides the line joining the points ( 4, - 2) and (- 2, 4) in the ratio

  • 1 : 2 internally

  • 1 : 2 externally

  • 2 : 1 internally

  • 2 : 1 externally


Advertisement