Equation of the line through the point (2, 3, 1) and parallel to the line of intersection of the planes x - 2y - z + 5 = 0 and x + y + 3z = 6 is
Foot of the perpendicular drawn from the origin to the plane 2x - 3y + 4z = 29 is
(5, - 1, 4)
(7, - 1, 3)
(5, - 2, 3)
(2, - 3, 4)
The projection of the line segment joining (2, 0, - 3) and (5, - 1, 2) on a straight line whose direction ratios are 2, 4, 4, is
D.
Let a be the vector joining ( 2, 0, - 3) and (5, - 1, 2).
=
and b =
The equation of the plane which bisects the· line segment joining the points (3, 2, 6) and (5, 4, 8) and is perpendicular to the same line segment, is
x + y + z = 16
x + y + z = 10
x + y + z = 12
x + y + z = 14
The foot of the perpendicular from the point (1, 6, 3) to the line is
(1, 3, 5)
(- 1, - 1, - 1)
(2, 5, 8)
(- 2, - 3, - 4)