The straight line r = (i^ + j^ + 2k

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

171.

The point of intersection of the straight lines r = 3i^ - 4j^ + 5k^ + λ- i^ - 2j^ + 2k^ and 3 - x- 1 = y + 42 = z - 57 is

  • (- 3, - 4, - 5)

  • (- 3, 4, 5)

  • (- 3, 4, - 5)

  • (3, - 4, 5)


172.

The vector equation of the straight line x - 2- 1 = y- 3 = 1 - z2 is

  • r = 2i^ + k^ + ti^ + 3j^ + 2k^

  • r = 2i^ - k^ + ti^ - 3j^ - 2k^

  • r = 2i^ + k^ + ti^ - 3j^ + 2k^

  • r = 2i^ + k^ + ti^ - 3j^ - 2k^


Advertisement

173.

The straight line r = (i^ + j^ + 2k^) + t2i^ + 5j^ + 3k^ is parallel to the plane r . (2i^ + j^ - 3k^) = 5. Then, the distance between the straight line and the plane is

  • 914

  • 814

  • 714

  • 614


B.

814

Clearly, given line passes through the point (i^ + j^ + 2k^) and is parallel to the given plane.

Distance between the line and the plane

=  Length of perpendicular from (i^ + j^ + 2k^) to the given
plane

=  (i^ + j^ + 2k^) . 2i^ + 5j^ + 3k^ - 52i^ + k^ - 3k^ = 2 + 1 - 6 - 54 + 1 + 9 = 814


Advertisement
174.

The distance between (2, 1, 0) and 2x + y + Zz + 5 = 0 is

  • 10

  • 10/3

  • 10/9

  • 5


Advertisement
175.

The equation of the plane that passes through the points (1, 0, 2), (-1, 1, 2), (5, 0, 3) is

  • x + 2y - 4z + 7 = 0

  • x + 2y - 3z + 7 = 0

  • x - 2y + 4z + 7 = 0

  • 2y - 4z - 7 + x = 0


176.

If a, b, c are vectors such that a + b + c = 0 and a = 7, b = 5, c = 3, then the angle between c and b is

  • π3

  • π6

  • π4

  • π


177.

The angle between the pair of lines x - 22 = y - 15 = z + 3- 3 and x + 2- 1 = y - 48 = z - 54 is

  • cos-121938

  • cos-123938

  • cos-124938

  • cos-126938


178.

The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is :

  • 3x + 2y + z + 1 = 0

  • 3x + 2y + z = 0

  • 2x + 3y + z = 0

  • x + y + z = 0


Advertisement
179.

If 12, 13, n are the direction cosines of a line, then the value of n is

  • 236

  • 2336

  • 23

  • 32


180.

The equation of the plane passing through (2, 3, 4) and parallel to the plane 5x - 6y + 7z = 3 is :

  • 5x - 6y + 7z + 20 = 0

  • 5x - 6y + 7z - 20 = 0

  • - 5x + 6y - 7z + 3 = 0

  • 5x + 6y + 7z + 3 = 0


Advertisement